2 resultados para 280103 Information Storage, Retrieval and Management

em DRUM (Digital Repository at the University of Maryland)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of image retrieval and matching is to find and locate object instances in images from a large-scale image database. While visual features are abundant, how to combine them to improve performance by individual features remains a challenging task. In this work, we focus on leveraging multiple features for accurate and efficient image retrieval and matching. We first propose two graph-based approaches to rerank initially retrieved images for generic image retrieval. In the graph, vertices are images while edges are similarities between image pairs. Our first approach employs a mixture Markov model based on a random walk model on multiple graphs to fuse graphs. We introduce a probabilistic model to compute the importance of each feature for graph fusion under a naive Bayesian formulation, which requires statistics of similarities from a manually labeled dataset containing irrelevant images. To reduce human labeling, we further propose a fully unsupervised reranking algorithm based on a submodular objective function that can be efficiently optimized by greedy algorithm. By maximizing an information gain term over the graph, our submodular function favors a subset of database images that are similar to query images and resemble each other. The function also exploits the rank relationships of images from multiple ranked lists obtained by different features. We then study a more well-defined application, person re-identification, where the database contains labeled images of human bodies captured by multiple cameras. Re-identifications from multiple cameras are regarded as related tasks to exploit shared information. We apply a novel multi-task learning algorithm using both low level features and attributes. A low rank attribute embedding is joint learned within the multi-task learning formulation to embed original binary attributes to a continuous attribute space, where incorrect and incomplete attributes are rectified and recovered. To locate objects in images, we design an object detector based on object proposals and deep convolutional neural networks (CNN) in view of the emergence of deep networks. We improve a Fast RCNN framework and investigate two new strategies to detect objects accurately and efficiently: scale-dependent pooling (SDP) and cascaded rejection classifiers (CRC). The SDP improves detection accuracy by exploiting appropriate convolutional features depending on the scale of input object proposals. The CRC effectively utilizes convolutional features and greatly eliminates negative proposals in a cascaded manner, while maintaining a high recall for true objects. The two strategies together improve the detection accuracy and reduce the computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While technologies for genetic sequencing have increased the promise of personalized medicine, they simultaneously pose threats to personal privacy. The public’s desire to protect itself from unauthorized access to information may limit the uses of this valuable resource. To date, there is limited understanding about the public’s attitudes toward the regulation and sharing of such information. We sought to understand the drivers of individuals’ decisions to disclose genetic information to a third party in a setting where disclosure potentially creates both private and social benefits, but also carries the risk of potential misuse of private information. We conducted two separate but related studies. First, we administered surveys to college students and parents, to determine individual attitudes toward and inter-generational influences on the disclosure decision. Second, we conducted a game-theory based experiment that assessed how participants’ decisions to disclose genetic information are influenced by societal and health factors. Key survey findings indicate that concerns about genetic information privacy negatively impact the likelihood of disclosure while the perceived benefits of disclosure and trust in the institution receiving the information have a positive influence. The experiment results also show that the risk of discrimination negatively affects the likelihood of disclosure, while the positive impact that disclosure has on the probability of finding a cure and the presence of a monetary incentive to disclose, increase the likelihood. We also study the determinants of individuals’ decision to be informed of findings about their health, and how information about health status is used for financial decisions.