4 resultados para 060202 Community Ecology

em DRUM (Digital Repository at the University of Maryland)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Urban forests are often highly fragmented with many exotic species. Altered disturbance regimes and environmental pollutants influence urban forest vegetation. One of the best ways to understand the impacts of land-use on forest composition is through long-term research. In 1998, the Baltimore Ecosystem Study established eight forest plots to investigate the impacts of urbanization on natural ecosystems. Four plots were located in urban forest patches and four were located in rural forests. In 2015, I revisited these plots to measure abundances and quantify change in forest composition, diversity, and structure. Sapling, shrub, and seedling abundance were reduced in the rural plots. Alpha diversity and turnover was lower in the rural plots. Beta diversity was reduced in the rural plots. The structure of the urban plots was mostly unchanged, except for a highly reduced sapling layer. Beta diversity in the urban plots was consistent across surveys due to high species turnover.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Restoration of natural wetlands may be informed by macroinvertebrate community composition. Macroinvertebrate communities of wetlands are influenced by environmental characteristics such as vegetation, soil, hydrology, land use, and isolation. This dissertation explores multiple approaches to the assessment of wetland macroinvertebrate community composition, and demonstrates how these approaches can provide complementary insights into the community ecology of aquatic macroinvertebrates. Specifically, this work focuses on macroinvertebrates of Delmarva Bays, isolated seasonal wetlands found on Maryland’s eastern shore. A comparison of macroinvertebrate community change over a nine years in a restored wetland complex indicated that the macroinvertebrate community of a rehabilitated wetlands more rapidly approximated the community of a reference site than did a newly created wetland. The recovery of a natural macroinvertebrate community in the rehabilitated wetland indicated that wetland rehabilitation should be prioritized over wetland creation and long-term monitoring may be needed to evaluate restoration success. This study also indicated that characteristics of wetland vegetation reflected community composition. The connection between wetland vegetation and macroinvertebrate community composition led to a regional assessment of predaceous diving beetle (Coleoptera: Dytiscidae) community composition in 20 seasonal wetlands, half with and half without sphagnum moss (Sphagnum spp.). Species-level identifications indicated that wetlands with sphagnum support unique and diverse assemblages of beetles. These patterns suggest that sphagnum wetlands provide habitat that supports biodiversity on the Delmarva Peninsula. To compare traits of co-occurring beetles, mandible morphology and temporal and spatial variation were measured between three species of predaceous diving beetles. Based on mandible architecture, all species may consume similarly sized prey, but prey characteristics likely differ in terms of piercing force required for successful capture and consumption. Therefore, different assemblages of aquatic beetles may have different effects on macroinvertebrate community structure. Integrating community-level and species-level data strengthens the association between individual organisms and their ecological role. Effective restoration of imperiled wetlands benefits from this integration, as it informs the management practices that both preserve biodiversity and promote ecosystem services.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Urbanization is associated with global biodiversity loss of macrophauna and flora through direct and indirect mechanisms, but to date few studies have examined urban soil microbes. Although there are numerous studies on the influence of agricultural management on soil microbial community composition, there has been no global-scale study of human control over urban soil microbial communities. This thesis extends the literature of urban ecology to include soil microbial communities by analyzing soils that are part of the Global Urban Soil Ecology and Education Network (GLUSEEN). Chapter 1 sets the context for urban ecology; Chapters 2 addresses patterns of community assembly, biodiversity loss, and the phylogenetic relationships among community members; Chapter 3 addresses the metabolic pathways that characterize microbial communities existing under different land-uses across varying geographic scales; and Chapter 4 relates Chapter 2 and 3 to one another and to evolutionary theory, tackling assumptions that are particular to microbial ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the number of fungal pathogen outbreaks become more frequent worldwide across taxa, so have the number of species extirpations and communities persisting with the pathogen. This phenomenon raises questions, such as: “what leads to host extinction during an outbreak?” and “how are hosts persisting once the pathogen establishes?.” But the data on host populations and communities across life stages before and after pathogen arrival rarely exist to answer these questions. Over the past three to four decades, the amphibian-killing fungus Batrachochytrim dendrobatidis (Bd) spread in a wave-like manner across Central America, leading to rapid species extirpations and population declines. I collected data on tadpole and adult amphibians in El Copé, Panama before, during, and after the Bd outbreak to answer these questions. I used Bayesian statistical approaches to account for imperfect host and pathogen detection of marked and unmarked individuals. In the tadpole community, within 11 months of Bds arrival, density and occupancy rapidly declined. Species losses were phylogenetically correlated, with glass frogs disappearing first, and tree frogs and poison-dart frogs remaining. I found that tadpole communities resembled one another more strongly after the outbreak than they did before Bd invasion. I found no tadpoles within 22 months of the outbreak and limited signs of recovery within 10 years. In contrast, at the same site, for a population of male glass frogs, Espadarana prosopleon, I found that 10 years post-outbreak, the population was consistently half its historic abundance, and that the lack of recruits to the population explained why the population had not rebounded, rather than high pathogen-induced mortality. And finally, examining the entire amphibian community, I found high pathogen prevalence, low infection intensities, and high survival rates of uninfected and infected hosts. Bd transmission risk, i.e., the probability a susceptible host becomes infected, did not relate to host density, pathogen prevalence, or infection intensity– Bd transmission risk was uniform across the study area. My results are especially relevant to conservation biologists aiming to predict the future impacts of Bd outbreaks, those trying to manage persisting populations, and those interested in reintroducing species back into wild amphibian communities.