3 resultados para “trade-offs”
em DRUM (Digital Repository at the University of Maryland)
Resumo:
Carbon and nitrogen loading to streams and rivers contributes to eutrophication as well as greenhouse gas (GHG) production in streams, rivers and estuaries. My dissertation consists of three research chapters, which examine interactions and potential trade-offs between water quality and greenhouse gas production in urban streams of the Chesapeake Bay watershed. My first research project focused on drivers of carbon export and quality in an urbanized river. I found that watershed carbon sources (soils and leaves) contributed more than in-stream production to overall carbon export, but that periods of high in-stream productivity were important over seasonal and daily timescales. My second research chapter examined the influence of urban storm-water and sanitary infrastructure on dissolved and gaseous carbon and nitrogen concentrations in headwater streams. Gases (CO2, CH4, and N2O) were consistently super-saturated throughout the course of a year. N2O concentrations in streams draining septic systems were within the high range of previously published values. Total dissolved nitrogen concentration was positively correlated with CO2 and N2O and negatively correlated with CH4. My third research chapter examined a long-term (15-year) record of GHG emissions from soils in rural forests, urban forest, and urban lawns in Baltimore, MD. CO2, CH4, and N2O emissions showed positive correlations with temperature at each site. Lawns were a net source of CH4 + N2O, whereas forests were net sinks. Gross CO2 fluxes were also highest in lawns, in part due to elevated growing-season temperatures. While land cover influences GHG emissions from soils, the overall role of land cover on this flux is very small (< 0.5%) compared with gases released from anthropogenic sources, according to a recent GHG budget of the Baltimore metropolitan area, where this study took place.
Resumo:
In energy harvesting communications, users transmit messages using energy harvested from nature. In such systems, transmission policies of the users need to be carefully designed according to the energy arrival profiles. When the energy management policies are optimized, the resulting performance of the system depends only on the energy arrival profiles. In this dissertation, we introduce and analyze the notion of energy cooperation in energy harvesting communications where users can share a portion of their harvested energy with the other users via wireless energy transfer. This energy cooperation enables us to control and optimize the energy arrivals at users to the extent possible. In the classical setting of cooperation, users help each other in the transmission of their data by exploiting the broadcast nature of wireless communications and the resulting overheard information. In contrast to the usual notion of cooperation, which is at the signal level, energy cooperation we introduce here is at the battery energy level. In a multi-user setting, energy may be abundant in one user in which case the loss incurred by transferring it to another user may be less than the gain it yields for the other user. It is this cooperation that we explore in this dissertation for several multi-user scenarios, where energy can be transferred from one user to another through a separate wireless energy transfer unit. We first consider the offline optimal energy management problem for several basic multi-user network structures with energy harvesting transmitters and one-way wireless energy transfer. In energy harvesting transmitters, energy arrivals in time impose energy causality constraints on the transmission policies of the users. In the presence of wireless energy transfer, energy causality constraints take a new form: energy can flow in time from the past to the future for each user, and from one user to the other at each time. This requires a careful joint management of energy flow in two separate dimensions, and different management policies are required depending on how users share the common wireless medium and interact over it. In this context, we analyze several basic multi-user energy harvesting network structures with wireless energy transfer. To capture the main trade-offs and insights that arise due to wireless energy transfer, we focus our attention on simple two- and three-user communication systems, such as the relay channel, multiple access channel and the two-way channel. Next, we focus on the delay minimization problem for networks. We consider a general network topology of energy harvesting and energy cooperating nodes. Each node harvests energy from nature and all nodes may share a portion of their harvested energies with neighboring nodes through energy cooperation. We consider the joint data routing and capacity assignment problem for this setting under fixed data and energy routing topologies. We determine the joint routing of energy and data in a general multi-user scenario with data and energy transfer. Next, we consider the cooperative energy harvesting diamond channel, where the source and two relays harvest energy from nature and the physical layer is modeled as a concatenation of a broadcast and a multiple access channel. Since the broadcast channel is degraded, one of the relays has the message of the other relay. Therefore, the multiple access channel is an extended multiple access channel with common data. We determine the optimum power and rate allocation policies of the users in order to maximize the end-to-end throughput of this system. Finally, we consider the two-user cooperative multiple access channel with energy harvesting users. The users cooperate at the physical layer (data cooperation) by establishing common messages through overheard signals and then cooperatively sending them. For this channel model, we investigate the effect of intermittent data arrivals to the users. We find the optimal offline transmit power and rate allocation policy that maximize the departure region. When the users can further cooperate at the battery level (energy cooperation), we find the jointly optimal offline transmit power and rate allocation policy together with the energy transfer policy that maximize the departure region.
Resumo:
Safe operation of unmanned aerial vehicles (UAVs) over populated areas requires reducing the risk posed by a UAV if it crashed during its operation. We considered several types of UAV risk-based path planning problems and developed techniques for estimating the risk to third parties on the ground. The path planning problem requires making trade-offs between risk and flight time. Four optimization approaches for solving the problem were tested; a network-based approach that used a greedy algorithm to improve the original solution generated the best solutions with the least computational effort. Additionally, an approach for solving a combined design and path planning problems was developed and tested. This approach was extended to solve robust risk-based path planning problem in which uncertainty about wind conditions would affect the risk posed by a UAV.