96 resultados para Gemstone Team Brain Blast
Resumo:
Currently, lackluster battery capability is restricting the widespread integration of Smart Grids, limiting the long-term feasibility of alternative, green energy conversion technologies. Silicon nanoparticles have great conductivity for applications in rechargeable batteries, but have degradation issues due to changes in volume during lithiation/delithiation cycles. To combat this, we use electrochemical deposition to uniformly space silicon particles on graphene sheets to create a more stable structure. We found the process of electrochemical deposition degraded the graphene binding in the electrode material, severely reducing charge capacity. But, the usage of mechanically mixing silicon particles with grapheme yielded batteries better than those that are commercially available.
Resumo:
Poultry litter contains high levels of natural sex hormones, nitrogen, phosphorous, and trace amounts of heavy metals. Poultry litter runoff from poultry and farming operations in the Delmarva region can have serious impacts on frog development in the Chesapeake Bay Watershed. In this study, we investigated potential effects of litter compounds on Xenopus laevis development when exposed to environmental levels (0.35 and 0.70 g/L) of litter solution. We found that despite rapid hormone degradation, poultry litter solution still affected X. laevis development. Hormones were also more persistent in the lower poultry litter concentration, leading to even greater effects. Slowed growth and increased female gonadal abnormalities were observed after exposure to 0.35 g/L but not to 0.70 g/L of litter solution, and increased male gonadal abnormalities were observed after treatment to both litter concentrations. The developmental impacts examined in this study may have greater environmental impacts on frog reproduction and survival.
Resumo:
While technologies for genetic sequencing have increased the promise of personalized medicine, they simultaneously pose threats to personal privacy. The public’s desire to protect itself from unauthorized access to information may limit the uses of this valuable resource. To date, there is limited understanding about the public’s attitudes toward the regulation and sharing of such information. We sought to understand the drivers of individuals’ decisions to disclose genetic information to a third party in a setting where disclosure potentially creates both private and social benefits, but also carries the risk of potential misuse of private information. We conducted two separate but related studies. First, we administered surveys to college students and parents, to determine individual attitudes toward and inter-generational influences on the disclosure decision. Second, we conducted a game-theory based experiment that assessed how participants’ decisions to disclose genetic information are influenced by societal and health factors. Key survey findings indicate that concerns about genetic information privacy negatively impact the likelihood of disclosure while the perceived benefits of disclosure and trust in the institution receiving the information have a positive influence. The experiment results also show that the risk of discrimination negatively affects the likelihood of disclosure, while the positive impact that disclosure has on the probability of finding a cure and the presence of a monetary incentive to disclose, increase the likelihood. We also study the determinants of individuals’ decision to be informed of findings about their health, and how information about health status is used for financial decisions.
Resumo:
Ambiguous expiration dates on milk cartons can mislead consumers into prematurely disposing unspoiled milk and potentially drinking spoiled milk. These misconceptions can lead to wastage that harms the environment, or potential discomfort and illness. The incorporation of pH-sensitive indicators into plastic milk cartons has the potential to replace stamped expiration dates as the traditional method of milk spoilage indication. We studied the correlation between bacteria count and milk pH to establish pH measurement as an effective indicator of milk quality. We then developed a method for incorporating bromothymol blue, a pH-sensitive color-changing dye, into a hydrogel made of polyacrylamide. This hydrogel can be added to existing packaging for milk or other products with detectable pH changes. Additionally, we conducted a consumer survey and analyzed current food packaging trends in the market. Our research indicates that a spoilage-indicating milk carton could have strong market potential as food industries increasingly adopt intelligent packaging designs.
Resumo:
Online courses are rapidly replacing traditional, face-to-face lectures in American universities (Allen & Seaman, 2011). As technology improves, this trend will likely continue and accelerate. Researchers must evaluate the impact of online courses compared to their traditional counterparts. This two-part study quantifies the effect of two variables – social presence and learner control – on students’ recall, application and perceived learning levels in different lecture formats. Students in introductory courses at a four-year, public, American university were randomly assigned into three groups to view distinct lecture formats, one in a traditional classroom and two via the Internet. Upon viewing the single lecture, the students were asked to fill out a test and survey to quantify teacher immediacy, recall and application, and perceived learning levels across lecture formats. The study found that different levels of social presence and learner control affected students’ perceived learning levels but did not impact recall or application.
Resumo:
Obesity, currently an epidemic, is a difficult disease to combat because it is marked by both a change in body weight and an underlying dysregulation in metabolism, making consistent weight loss challenging. We sought to elucidate this metabolic dysregulation resulting from diet-induced obesity (DIO) that persists through subsequent weight loss. We hypothesized that weight gain imparts a change in “metabolic set point” persisting through subsequent weight loss and that this modification may involve a persistent change in hepatic AMP-activated protein kinase (AMPK), a key energy-sensing enzyme in the body. To test these hypotheses, we tracked metabolic perturbations through this period, measuring changes in hepatic AMPK. To further understand the role of AMPK we used AICAR, an AMPK activator, following DIO. Our findings established a more dynamic metabolic model of DIO and subsequent weight loss. We observed hepatic AMPK elevation following weight loss, but AICAR administration without similar dieting was unsuccessful in improving metabolic dysregulation. Our findings provide an approach to modeling DIO and subsequent dieting that can be built upon in future studies and hopefully contribute to more effective long-term treatments of obesity.
Resumo:
This research project uses field measurements to investigate the cooling of a triple-junction, photovoltaic cell under natural convection when subjected to various amounts of insolation. The team built an experimental apparatus consisting of a mirror and Fresnel lens to concentrate light onto a triple-junction photovoltaic cell, mounted vertically on a copper heat sink. Measurements were taken year-round to provide a wide range of ambient conditions. A surface was then generated, in MATLAB, using Sparrow’s model for natural convection on a vertical plate under constant heat flux. This surface can be used to find the expected operating temperature of a cell at any location, given the ambient temperature and insolation. This research is an important contribution to the industry because it utilizes field data that represents how a cell would react under normal operation. It also extends the use of a well-known model from a one-sun environment to a multi-sun one.
Resumo:
Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.
Resumo:
Elevated delay discounting, in which delayed rewards quickly lose value as a function of time, is associated with substance use and abuse. Currently, the direction of causation is unclear: while some research indicates that elevated delay discounting leads to future substance use, it is also possible that chronic substance use and specifically the rate of reinforcement associated with drug use, leads to elevated delay discounting. This project aims to examine the latter possibility. 47 participants completed ten 30-minute daily sessions of a visual attention task, and were reinforced at a rate intended to model drug use (fixed ratio 1) or drug abstinence (fixed ratio 10). Baseline and post-training rates of delay discounting were assessed for hypothetical $50 and $1000. Area under the curve of the indifference points as a function of delay was calculated. A greater area under the curve suggests more self-control, whereas a lower value represents more impulsiveness. Results at the monetary value of both $50 and $1000 showed increased impulsivity in relation to the control for both the FR1 and FR10 groups indicating that the two schedules may both model drug use.
Resumo:
We present a novel system to be used in the rehabilitation of patients with forearm injuries. The system uses surface electromyography (sEMG) recordings from a wireless sleeve to control video games designed to provide engaging biofeedback to the user. An integrated hardware/software system uses a neural net to classify the signals from a user’s muscles as they perform one of a number of common forearm physical therapy exercises. These classifications are used as input for a suite of video games that have been custom-designed to hold the patient’s attention and decrease the risk of noncompliance with the physical therapy regimen necessary to regain full function in the injured limb. The data is transmitted wirelessly from the on-sleeve board to a laptop computer using a custom-designed signal-processing algorithm that filters and compresses the data prior to transmission. We believe that this system has the potential to significantly improve the patient experience and efficacy of physical therapy using biofeedback that leverages the compelling nature of video games.
Resumo:
Biogas is a mixture of methane and other gases. In its crude state, it contains carbon dioxide (CO2) that reduces its energy efficiency and hydrogen sulfide (H2S) that is toxic and highly corrosive. Because chemical methods of removal are expensive and environmentally hazardous, this project investigated an algal-based system to remove CO2 from biogas. An anaerobic digester was used to mimic landfill biogas. Iron oxide and an alkaline spray were used to remove H2S and CO2 respectively. The CO2-laden alkali solution was added to a helical photobioreactor where the algae metabolized the dissolved CO2 to generate algal biomass. Although technical issues prevented testing of the complete system for functionality, cost analysis was completed and showed that the system, in its current state, is not economically feasible. However, modifications may reduce operation costs.
Resumo:
Chronic diabetic ulcers affect approximately 15% of patients with diabetes worldwide. Currently, applied electric fields are being investigated as a reliable and cost-effective treatment. This in vitro study aimed to determine the effects of a constant and spatially variable electric field on three factors: endothelial cell migration, proliferation, and angiogenic gene expression. Results for a constant electric field of 0.01 V demonstrated that migration at short time points increased 20-fold and proliferation at long time points increased by a factor of 1.40. Results for a spatially variable electric field did not increase directional migration, but increased proliferation by a factor of 1.39 and by a factor of 1.55 after application of 1.00 V and 0.01 V, respectively. Both constant and spatially variable applied fields increased angiogenic gene expression. Future research that explores a narrower range of intensity levels may more clearly identify the optimal design specifications of a spatially variable electric field.
Resumo:
In 2014 alone, over 12,000 women are expected to be diagnosed with cervical cancer. Of these women who are diagnosed, about 3,909 will result in death. Despite developments in prevention methods, cervical cancer remains a major health concern for women. Growing evidence suggests that Salvianolic acid B (Sal B), a major component of the Chinese herb Danshen, may inhibit cancer cell growth and help fight against cervical cancer. This study characterizes the potential of Sal B as a cervical cancer drug through in vitro testing on HeLa cells. We hypothesized that application of Sal B to HeLa cells will result in decreased cell viability and increased apoptosis in a dose dependent manner. HeLa cells were treated with varying concentrations of Sal B: 25µM, 50µM, 100µM, and 200µM. Cell viability was determined through colony formation assay, cell death ELISA, and nuclear morphology. An inhibitor study was also conducted for further apoptosis pathway analysis. Colony formation assay demonstrated a significant decrease in cell viability with increasing concentrations of Sal B with 75% viability at 50µM down to 0% viability at 200µM. Cell death ELISA and the analysis of nuclear morphology via Hoechst staining reported significant levels of apoptosis at concentrations equal to 50µM and greater. Furthermore, experiments using caspase inhibitors indicated that Sal B’s apoptotic effects are caspase-8 dependent. In conclusion, our results demonstrate that Sal B inhibits cancer cell growth by a mechanism that involves apoptosis induction through the extrinsic pathway.
Resumo:
Many food production methods are both economically and environmentally unsustainable. Our project investigated aquaponics, an alternative method of agriculture that could address these issues. Aquaponics combines fish and plant crop production in a symbiotic, closed-loop system. We aimed to reduce the initial and operating costs of current aquaponic systems by utilizing alternative feeds. These improvements may allow for sustainable implementation of the system in rural or developing regions. We conducted a multi-phase process to determine the most affordable and effective feed alternatives for use in an aquaponic system. At the end of two preliminary phases, soybean meal was identified as the most effective potential feed supplement. In our final phase, we constructed and tested six full-scale aquaponic systems of our own design. Data showed that soybean meal can be used to reduce operating costs and reliance on fishmeal. However, a more targeted investigation is needed to identify the optimal formulation of alternative feed blends.
Resumo:
Using scientific methods in the humanities is at the forefront of objective literary analysis. However, processing big data is particularly complex when the subject matter is qualitative rather than numerical. Large volumes of text require specialized tools to produce quantifiable data from ideas and sentiments. Our team researched the extent to which tools such as Weka and MALLET can test hypotheses about qualitative information. We examined the claim that literary commentary exists within political environments and used US periodical articles concerning Russian literature in the early twentieth century as a case study. These tools generated useful quantitative data that allowed us to run stepwise binary logistic regressions. These statistical tests allowed for time series experiments using sea change and emergency models of history, as well as classification experiments with regard to author characteristics, social issues, and sentiment expressed. Both types of experiments supported our claim with varying degrees, but more importantly served as a definitive demonstration that digitally enhanced quantitative forms of analysis can apply to qualitative data. Our findings set the foundation for further experiments in the emerging field of digital humanities.