411 resultados para Bank of Maryland, Baltimore.
Resumo:
A solid state lithium metal battery based on a lithium garnet material was developed, constructed and tested. Specifically, a porous-dense-porous trilayer structure was fabricated by tape casting, a roll-to-roll technique conducive to high volume manufacturing. The high density and thin center layer (< 20 μm) effectively blocks dendrites even over hundreds of cycles. The microstructured porous layers, serving as electrode supports, are demonstrated to increase the interfacial surface area available to the electrodes and increase cathode loading. Reproducibility of flat, well sintered ceramics was achieved with consistent powderbed lattice parameter and ball milling of powderbed. Together, the resistance of the LLCZN trilayer was measured at an average of 7.6 ohm-cm2 in a symmetric lithium cell, significantly lower than any other reported literature results. Building on these results, a full cell with a lithium metal anode, LLCZN trilayer electrolyte, and LiCoO2 cathode was cycled 100 cycles without decay and an average ASR of 117 ohm-cm2. After cycling, the cell was held at open circuit for 24 hours without any voltage fade, demonstrating the absence of a dendrite or short-circuit of any type. Cost calculations guided the optimization of a trilayer structure predicted that resulting cells will be highly competitive in the marketplace as intrinsically safe lithium batteries with energy densities greater than 300 Wh/kg and 1000 Wh/L for under $100/kWh. Also in the pursuit of solid state batteries, an improved Na+ superionic conductor (NASICON) composition, Na3Zr2Si2PO12, was developed with a conductivity of 1.9x10-3 S/cm. New super-lithiated lithium garnet compositions, Li7.06La3Zr1.94Y0.06O12 and Li7.16La3Zr1.84Y0.16O12, were developed and studied revealing insights about the mechanisms of conductivity in lithium garnets.
Resumo:
Loading of spinal motion segment units alters biomechanical properties by modifying flexibility and range of motion. This study utilizes angular displacement due to an applied bending moment to assess biomechanical function during high-magnitude and prolonged compressive loading of ovine lumbar motion segments. High compressive loads, representative of physiological lifestyle and occupational behaviors, appear to limit fluid recovery of the intervertebral disc, thereby modifying spinal flexibility and increasing spinal instability. Intermittent extensions, or backwards bending movements, may provide a protective effect against the load-induced spinal instability. This study contributes a greater understanding of the effects of load history on the function and health of the lumbar spine. Findings may inform future efforts investigating adjustments in spinal posture to preserve or promote the recovery of lumbar spinal biomechanics.
Resumo:
Surface ozone is formed in the presence of NOx (NO + NO2) and volatile organic compounds (VOCs) and is hazardous to human health. A better understanding of these precursors is needed for developing effective policies to improve air quality. To evaluate the year-to-year changes in source contributions to total VOCs, Positive Matrix Factorization (PMF) was used to perform source apportionment using available hourly observations from June through August at a Photochemical Assessment Monitoring Station (PAMS) in Essex, MD for each year from 2007-2015. Results suggest that while gasoline and vehicle exhaust emissions have fallen, the contribution of natural gas sources to total VOCs has risen. To investigate this increasing natural gas influence, ethane measurements from PAMS sites in Essex, MD and Washington, D.C. were examined. Following a period of decline, daytime ethane concentrations have increased significantly after 2009. This trend appears to be linked with the rapid shale gas production in upwind, neighboring states, especially Pennsylvania and West Virginia. Back-trajectory analyses similarly show that ethane concentrations at these monitors were significantly greater if air parcels had passed through counties containing a high density of unconventional natural gas wells. In addition to VOC emissions, the compressors and engines involved with hydraulic fracturing operations also emit NOx and particulate matter (PM). The Community Multi-scale Air Quality (CMAQ) Model was used to simulate air quality for the Eastern U.S. in 2020, including emissions from shale gas operations in the Appalachian Basin. Predicted concentrations of ozone and PM show the largest decreases when these natural gas resources are hypothetically used to convert coal-fired power plants, despite the increased emissions from hydraulic fracturing operations expanded into all possible shale regions in the Appalachian Basin. While not as clean as burning natural gas, emissions of NOx from coal-fired power plants can be reduced by utilizing post-combustion controls. However, even though capital investment has already been made, these controls are not always operated at optimal rates. CMAQ simulations for the Eastern U.S. in 2018 show ozone concentrations decrease by ~5 ppb when controls on coal-fired power plants limit NOx emissions to historically best rates.
Resumo:
Ethylene is an essential plant hormone involved in nearly all stages of plant growth and development. EIN2 (ETHYLENE INSENSITIVE2) is a master positive regulator in the ethylene signaling pathway, consisting of an N-terminal domain and a C-terminal domain. The EIN2 N-terminal domain localizes to the endoplasmic reticulum (ER) membrane and shows sequence similarity to Nramp metal ion transporters. The cytosolic C-terminal domain is unique to plants and signals downstream. There have been several major gaps in our knowledge of EIN2 function. It was unknown how the ethylene signal gets relayed from the known upstream component CTR1 (CONSTITUTIVE RESPONSE1) a Ser/Thr kinase at the ER, to EIN2. How the ethylene signal was transduced from EIN2 to the next downstream component transcription factor EIN3 (ETHYLENE INSENSITIVE3) in the nucleus was also unknown. The N-terminal domain of EIN2 shows homology to Nramp metal ion transporters and whether EIN2 can also function as a metal transporter has been a question plaguing the ethylene field for almost two decades. Here, EIN2 was found to interact with the CTR1 protein kinase, leading to the discovery that CTR1 phosphorylates the C-terminal domain of EIN2 in Arabidopsis thaliana. Using tags at the termini of EIN2, it was deduced that in the presence of ethylene, the EIN2 C-terminal domain is cleaved and translocates into the nucleus, where it could somehow activate downstream ethylene responses. The EIN2 C-terminal domain interacts with nuclear proteins, RTE3 and EER5, which are components of the TREX-2 mRNA export complex, although the role of these interactions remains unclear. The EIN2 N-terminal domain was found to be capable of divalent metal transport when expressed in E. coli and S. cerevisiae leading to the hypothesis that metal transport plays a role in ethylene signaling. This hypothesis was tested using a novel missense allele, ein2 G36E, substituting a highly conserved residue that is required for metal transport in Nramp proteins. This G36E substitution did not disrupt metal ion transport of EIN2, but the ethylene insensitive phenotype of this mutant indicates that the EIN2 N-terminal domain is important for positively regulating the C-terminal domain. The defect of the ein2 G36E mutant does not prevent proper expression or subcellular localization, but might affect protein modifications. The ein2 G36E allele is partially dominant, mostly likely displaying haploinsufficiency. Overexpression of the EIN2 N-terminal domain in the ein2 G36E mutant did not rescue ethylene insensitivity, suggesting the N-terminal domain functions in cis to regulate the C-terminal domain. These findings advance our knowledge of EIN2, which is critical to understanding ethylene signaling.
Resumo:
The constant need to improve helicopter performance requires the optimization of existing and future rotor designs. A crucial indicator of rotor capability is hover performance, which depends on the near-body flow as well as the structure and strength of the tip vortices formed at the trailing edge of the blades. Computational Fluid Dynamics (CFD) solvers must balance computational expenses with preservation of the flow, and to limit computational expenses the mesh is often coarsened in the outer regions of the computational domain. This can lead to degradation of the vortex structures which compose the rotor wake. The current work conducts three-dimensional simulations using OVERTURNS, a three-dimensional structured grid solver that models the flow field using the Reynolds-Averaged Navier-Stokes equations. The S-76 rotor in hover was chosen as the test case for evaluating the OVERTURNS solver, focusing on methods to better preserve the rotor wake. Using the hover condition, various computational domains, spatial schemes, and boundary conditions were tested. Furthermore, a mesh adaption routine was implemented, allowing for the increased refinement of the mesh in areas of turbulent flow without the need to add points to the mesh. The adapted mesh was employed to conduct a sweep of collective pitch angles, comparing the resolved wake and integrated forces to existing computational and experimental results. The integrated thrust values saw very close agreement across all tested pitch angles, while the power was slightly over predicted, resulting in under prediction of the Figure of Merit. Meanwhile, the tip vortices have been preserved for multiple blade passages, indicating an improvement in vortex preservation when compared with previous work. Finally, further results from a single collective pitch case were presented to provide a more complete picture of the solver results.
Resumo:
Research on attitudes toward seeking professional help among college students has examined the influence of social class and stigma. This study tested 4 theoretically and empirically derived structural equation models of college students’ attitudes toward seeking counseling with a sample of 2230 incoming university students. The models represented competing hypotheses regarding the manners in which objective social class, subjective social class, classism, public stigma, stigma by close others, and self-stigma related to attitudes toward seeking professional help. Findings supported the social class direct and indirect effects model, as well as the notion that classism and stigma domains could explain the indirect relationships between social class and attitudes. Study limitations, future directions for research, and implications for counseling are discussed.
Resumo:
Everyday, humans and animals navigate complex acoustic environments, where multiple sound sources overlap. Somehow, they effortlessly perform an acoustic scene analysis and extract relevant signals from background noise. Constant updating of the behavioral relevance of ambient sounds requires the representation and integration of incoming acoustical information with internal representations such as behavioral goals, expectations and memories of previous sound-meaning associations. Rapid plasticity of auditory representations may contribute to our ability to attend and focus on relevant sounds. In order to better understand how auditory representations are transformed in the brain to incorporate behavioral contextual information, we explored task-dependent plasticity in neural responses recorded at four levels of the auditory cortical processing hierarchy of ferrets: the primary auditory cortex (A1), two higher-order auditory areas (dorsal PEG and ventral-anterior PEG) and dorso-lateral frontal cortex. In one study we explored the laminar profile of rapid-task related plasticity in A1 and found that plasticity occurred at all depths, but was greatest in supragranular layers. This result suggests that rapid task-related plasticity in A1 derives primarily from intracortical modulation of neural selectivity. In two other studies we explored task-dependent plasticity in two higher-order areas of the ferret auditory cortex that may correspond to belt (secondary) and parabelt (tertiary) auditory areas. We found that representations of behaviorally-relevant sounds are progressively enhanced during performance of auditory tasks. These selective enhancement effects became progressively larger as you ascend the auditory cortical hierarchy. We also observed neuronal responses to non-auditory, task-related information (reward timing, expectations) in the parabelt area that were very similar to responses previously described in frontal cortex. These results suggests that auditory representations in the brain are transformed from the more veridical spectrotemporal information encoded in earlier auditory stages to a more abstract representation encoding sound behavioral meaning in higher-order auditory areas and dorso-lateral frontal cortex.
Resumo:
Research on the transition to adulthood dates back nearly four decades, but a growing body of research has taken a new approach by investigating multiple demographic markers in the transition to adulthood simultaneously. Using the life course perspective, this dissertation is built on the literature by first examining contemporary young adults’ pathways to adulthood from ages 18 to 30 and their differences by gender. Data for this study were drawn from the National Longitudinal Survey of Youth 1997; the final sample included 2,185 men and 2,086 women. The college-educated single workers pathway, the college-educated married working parents pathway, and the high-school-educated single parents pathway were identified in both genders. For men, the study also identified the high-school-educated single workers pathway and the high-school-educated married working parents pathway. For women, the study also identified the high-school-educated workers pathway and the high-school-educated married parents pathway. Not only did the definitions of some pathways differ by gender, but even in the pathways with the same definition, gender differences were found in the probabilities of being married, of being a parent, or of being employed full-time. Based on the pathways to adulthood identified, this research examined the family and adolescent precursors and whether race moderates the associations between family structure experiences and young adults’ pathways to adulthood. Parental education, family structure, GPA, delinquency, early sexual activity, and race/ethnicity were the family and adolescent precursors that distinguished among pathways taken by the youth. Two interactions between race and family structure/instability were identified. The positive association between growing up in a single-parent family and the odds of taking the high-school-educated single workers pathway compared to the college-educated married working parents pathway was weaker for Black males than for White males. The positive association between family instability and the odds of taking the college-educated single workers pathway compared to the college-educated married working parents pathway was weaker for Black females than for White females. This dissertation accounted for changes in the multiple statuses related to becoming an adult by following contemporary young adults for 12 years. More research on contemporary young adults’ pathways to adulthood and subgroup differences in the effects of precursors are recommended. Limitations and implications of this study are discussed.
Resumo:
Despite a current emphasis in Romantic scholarship on intersubjectivity, this study suggests that we still have much to learn about how theories of intersubjectivity operate in Romantic-era writings that focus on the family—the most common vehicle for exploring relationships during the period. By investigating how sympathy, intimacy, and fidelity are treated in the works of Mary Hays, Felicia Hemans, and Mary Shelley, this dissertation discovers the presence of an “ethics of refusal” within women’s Romantic-era texts. Texts that promote an ethics of refusal, I argue, almost advocate for a particular mode of relating within a given model of the family as the key to more equitable social relations, but, then, they ultimately refuse to support any particular model. Although drawn towards models of relating that, at first, seem to offer explicit pathways towards a more ethical society, texts that promote an ethics of refusal ultimately reject any program of reform. Such rejection is not unaccountable, but stems from anxieties about appearing to dictate what is best for others when others are, in reality, other than the self. In this dissertation, I draw from feminist literary critiques that focus on ethics; genre-focused literary critiques; and studies of sympathy, intimacy, and fidelity that investigate modes of relating within the context of literary works and reader-textual relations. Psychoanalytic theory also plays an important role within my third chapter on Mary Shelley’s novel Falkner. Scholarship that investigates the dialectical nature of Romantic-era literature informs my entire project. Through theorizing and studying an ethics of refusal, we can more fully understand how intersubjective modes functioned in Romantic literature and discover a Romanticism uniquely committed to attempting to turn dialectical reasoning into a social practice.
Resumo:
Biofilms are the primary cause of clinical bacterial infections and are impervious to typical amounts of antibiotics, necessitating very high doses for treatment. Therefore, it is highly desirable to develop new alternate methods of treatment that can complement or replace existing approaches using significantly lower doses of antibiotics. Current standards for studying biofilms are based on end-point studies that are invasive and destroy the biofilm during characterization. This dissertation presents the development of a novel real-time sensing and treatment technology to aid in the non-invasive characterization, monitoring and treatment of bacterial biofilms. The technology is demonstrated through the use of a high-throughput bifurcation based microfluidic reactor that enables simulation of flow conditions similar to indwelling medical devices. The integrated microsystem developed in this work incorporates the advantages of previous in vitro platforms while attempting to overcome some of their limitations. Biofilm formation is extremely sensitive to various growth parameters that cause large variability in biofilms between repeated experiments. In this work we investigate the use of microfluidic bifurcations for the reduction in biofilm growth variance. The microfluidic flow cell designed here spatially sections a single biofilm into multiple channels using microfluidic flow bifurcation. Biofilms grown in the bifurcated device were evaluated and verified for reduced biofilm growth variance using standard techniques like confocal microscopy. This uniformity in biofilm growth allows for reliable comparison and evaluation of new treatments with integrated controls on a single device. Biofilm partitioning was demonstrated using the bifurcation device by exposing three of the four channels to various treatments. We studied a novel bacterial biofilm treatment independent of traditional antibiotics using only small molecule inhibitors of bacterial quorum sensing (analogs) in combination with low electric fields. Studies using the bifurcation-based microfluidic flow cell integrated with real-time transduction methods and macro-scale end-point testing of the combination treatment showed a significant decrease in biomass compared to the untreated controls and well-known treatments such as antibiotics. To understand the possible mechanism of action of electric field-based treatments, fundamental treatment efficacy studies focusing on the effect of the energy of the applied electrical signal were performed. It was shown that the total energy and not the type of the applied electrical signal affects the effectiveness of the treatment. The linear dependence of the treatment efficacy on the applied electrical energy was also demonstrated. The integrated bifurcation-based microfluidic platform is the first microsystem that enables biofilm growth with reduced variance, as well as continuous real-time threshold-activated feedback monitoring and treatment using low electric fields. The sensors detect biofilm growth by monitoring the change in impedance across the interdigitated electrodes. Using the measured impedance change and user inputs provided through a convenient and simple graphical interface, a custom-built MATLAB control module intelligently switches the system into and out of treatment mode. Using this self-governing microsystem, in situ biofilm treatment based on the principles of the bioelectric effect was demonstrated by exposing two of the channels of the integrated bifurcation device to low doses of antibiotics.
Resumo:
Early human development offers a unique perspective in investigating the potential cognitive and social implications of action and perception. Specifically, during infancy, action production and action perception undergo foundational developments. One essential component to examine developments in action processing is the analysis of others’ actions as meaningful and goal-directed. Little research, however, has examined the underlying neural systems that may be associated with emerging action and perception abilities, and infants’ learning of goal-directed actions. The current study examines the mu rhythm—a brain oscillation found in the electroencephalogram (EEG)—that has been associated with action and perception. Specifically, the present work investigates whether the mu signal is related to 9-month-olds’ learning of a novel goal-directed means-end task. The findings of this study demonstrate a relation between variations in mu rhythm activity and infants’ ability to learn a novel goal-directed means-end action task (compared to a visual pattern learning task used as a comparison task). Additionally, we examined the relations between standardized assessments of early motor competence, infants’ ability to learn a novel goal-directed task, and mu rhythm activity. We found that: 1a) mu rhythm activity during observation of a grasp uniquely predicted infants’ learning on the cane training task, 1b) mu rhythm activity during observation and execution of a grasp did not uniquely predict infants’ learning on the visual pattern learning task (comparison learning task), 2) infants’ motor competence did not predict infants’ learning on the cane training task, 3) mu rhythm activity during observation and execution was not related to infants’ measure of motor competence, and 4) mu rhythm activity did not predict infants’ learning on the cane task above and beyond infants’ motor competence. The results from this study demonstrate that mu rhythm activity is a sensitive measure to detect individual differences in infants’ action and perception abilities, specifically their learning of a novel goal-directed action.
Resumo:
Exercise and physical activity are lifestyle behaviors associated with enriched mental health. Understanding the mechanisms by which exercise and physical activity improve mental health may provide insight for novel therapeutic approaches for numerous mental health disorders. This dissertation reports the findings from three studies investigating the influence of acute and chronic exercise on behavioral and mechanistic markers of hippocampal plasticity and delves into the potential role of noradrenergic signaling in the hippocampal adaptations with exercise. The first study assessed the effects of long-term voluntary wheel running on hippocampal expression of plasticity-associated genes and proteins in adult male and female C57BL/6J mice, highlighting sex differences in the adaptations to long-term voluntary wheel running. The second study examined the influence of acute exercise intensity on AMPA receptor phosphorylation, a mechanism essential for hippocampal plasticity, plasticity- associated gene expression, spatial learning and memory, and anxiety-like behavior. The unexpected finding that acute exercise increased anxiety-like behavior encouraged investigation into the role of central noradrenergic signaling in acute exercise-induced anxiety. The third study determined how previous exposure to voluntary wheel running modulates the response to an acute bout of exercise, focusing primarily on transcription of the important plasticity-promoting gene, brain-derived neurotrophic factor. Using a pharmacological approach to compromise the locus coeruleus noradrenergic system, a system that is implicated in age-related mental health disorders such as Alzheimer’s Disease, the third study also investigated the influence and interaction of the noradrenergic system and acute exercise on expression of multiple brain-derived neurotrophic factor transcripts. Together, this dissertation reports the findings from a series of experiments that explored similarities, differences, and interactions between the effects of acute and chronic exercise on markers of hippocampal plasticity and behavior. Further, this work provides insight into the role of the noradrenergic system in exercise-induced hippocampal plasticity.
Resumo:
Resettlement associated with development projects results in a variety of negative impacts. This dissertation uses the resettlement context to frame the dynamic relationships formed between peoples and places experiencing development. Two case studies contribute: (a) the border zone of Mozambique’s Limpopo National Park where residents contend with changes to land access and use; and (b) Bairro Chipanga in Moatize, Mozambique where a resettled population struggles to form place attachment and transform the post-resettlement site into a “good” place. Through analysis of data collected at these sites between 2009 and 2015, this dissertation investigates how changing environments impact person-place relationships before and after resettlement occurs. Changing environments create conditions leading to disemplacement—feeling like one no longer belongs—that reduces the environment’s ability to foster place attachment. Research findings indicate that responses taken by individuals living in the changing environment depend heavily upon whether resettlement has already occurred. In a pre-resettlement context, residents adjust their daily lives to diminish the effects of a changing environment and re-create the conditions to which they initially formed an attachment. They accept impoverishing conditions, including a narrowing of the spaces in which they live their daily lives, because it is preferred to the anxiety that accompanies being forced to resettle. In a post-resettlement context, resettlement disrupts the formation of place attachment and resettled peoples become a placeless population. When the resettlement has not resulted in anticipated outcomes, the aspiration for social justice—seeking conditions residents had reason to expect—negatively influences residents’ perspectives about the place. The post-resettlement site becomes a bad place with a future unchanged from the present. At best, this results in a population in which more members are willing to move away from the post-resettlement site, and, at worse, complete disengagement of other members from trying to improve the community. Resettlement thus has the potential to launch a cycle of movement- displacement-movement that prevents an entire generation from establishing place attachment and realizing its benefits. At the very least, resettlement impedes the formation of place attachment to new places. Thus, this dissertation draws attention to the unseen and uncompensated losses of resettlement.
Resumo:
Suburban lifestyle is popular among American families, although it has been criticized for encouraging automobile use through longer commutes, causing heavy traffic congestion, and destroying open spaces (Handy, 2005). It is a serious concern that people living in low-density suburban areas suffer from high automobile dependency and lower rates of daily physical activity, both of which result in social, environmental and health-related costs. In response to such concerns, researchers have investigated the inter-relationships between urban land-use pattern and travel behavior within the last few decades and suggested that land-use planning can play a significant role in changing travel behavior in the long-term. However, debates regarding the magnitude and efficiency of the effects of land-use on travel patterns have been contentious over the years. Changes in built-environment patterns is potentially considered a long-term panacea for automobile dependency and traffic congestion, despite some researchers arguing that the effects of land-use on travel behavior are minor, if any. It is still not clear why the estimated impact is different in urban areas and how effective a proposed land-use change/policy is in changing certain travel behavior. This knowledge gap has made it difficult for decision-makers to evaluate land-use plans and policies. In addition, little is known about the influence of the large-scale built environment. In the present dissertation, advanced spatial-statistical tools have been employed to better understand and analyze these impacts at different scales, along with analyzing transit-oriented development policy at both small and large scales. The objective of this research is to: (1) develop scalable and consistent measures of the overall physical form of metropolitan areas; (2) re-examine the effects of built-environment factors at different hierarchical scales on travel behavior, and, in particular, on vehicle miles traveled (VMT) and car ownership; and (3) investigate the effects of transit-oriented development on travel behavior. The findings show that changes in built-environment at both local and regional levels could be very influential in changing travel behavior. Specifically, the promotion of compact, mixed-use built environment with well-connected street networks reduces VMT and car ownership, resulting in less traffic congestion, air pollution, and energy consumption.
Resumo:
The following dissertation focuses on the all-male chorus context. Through a survey of university, GALA and adult affiliated community chorus directors on the specific challenges – vocal pedagogy, rehearsal techniques, auditioning, and repertoire – of the TTBB chorus, valuable insights were gathered from participating directors that serve to supplement existing literature available to directors.