27 resultados para College Performance
Resumo:
Life Cycle Climate Performance (LCCP) is an evaluation method by which heating, ventilation, air conditioning and refrigeration systems can be evaluated for their global warming impact over the course of their complete life cycle. LCCP is more inclusive than previous metrics such as Total Equivalent Warming Impact. It is calculated as the sum of direct and indirect emissions generated over the lifetime of the system “from cradle to grave”. Direct emissions include all effects from the release of refrigerants into the atmosphere during the lifetime of the system. This includes annual leakage and losses during the disposal of the unit. The indirect emissions include emissions from the energy consumption during manufacturing process, lifetime operation, and disposal of the system. This thesis proposes a standardized approach to the use of LCCP and traceable data sources for all aspects of the calculation. An equation is proposed that unifies the efforts of previous researchers. Data sources are recommended for average values for all LCCP inputs. A residential heat pump sample problem is presented illustrating the methodology. The heat pump is evaluated at five U.S. locations in different climate zones. An excel tool was developed for residential heat pumps using the proposed method. The primary factor in the LCCP calculation is the energy consumption of the system. The effects of advanced vapor compression cycles are then investigated for heat pump applications. Advanced cycle options attempt to reduce the energy consumption in various ways. There are three categories of advanced cycle options: subcooling cycles, expansion loss recovery cycles and multi-stage cycles. The cycles selected for research are the suction line heat exchanger cycle, the expander cycle, the ejector cycle, and the vapor injection cycle. The cycles are modeled using Engineering Equation Solver and the results are applied to the LCCP methodology. The expander cycle, ejector cycle and vapor injection cycle are effective in reducing LCCP of a residential heat pump by 5.6%, 8.2% and 10.5%, respectively in Phoenix, AZ. The advanced cycles are evaluated with the use of low GWP refrigerants and are capable of reducing the LCCP of a residential heat by 13.7%, 16.3% and 18.6% using a refrigerant with a GWP of 10. To meet the U.S. Department of Energy’s goal of reducing residential energy use by 40% by 2025 with a proportional reduction in all other categories of residential energy consumption, a reduction in the energy consumption of a residential heat pump of 34.8% with a refrigerant GWP of 10 for Phoenix, AZ is necessary. A combination of advanced cycle, control options and low GWP refrigerants are necessary to meet this goal.
Resumo:
This paper is a documentation of a practice-based dance work of the creative process, research and performance presentation of the piece “Nyam chiem.” This thesis examines the phenomenon of sleep paralysis through a personal reflexive research. The work challenges the notion that sleep paralysis is evil, revealing the phenomenon as a part of the human experience. The research is in two parts, practical and theory. The practical component includes; dance rehearsals, and staging of the piece as presentation. The theoretical component includes the documentation of the work in a written format capturing my personal stories, and salient issues arising from the process into a scholarly paper.
Resumo:
This paper answers the question of whether a design intervention on Washington Adventist Hospital’s Takoma Park campus can combine stormwater Best Management Practices with outdoor healing spaces, to improve the health of the local creek (Sligo Creek) while creating a restorative environment for the hospital community. To improve the health of Sligo Creek, a campus-wide stormwater analysis was undertaken, in addition to an intervention-site-specific stormwater analysis, and a literature review of stormwater best management practices. To create a restorative environment, a literature review of healing gardens was undertaken, in addition to a campus-wide site analysis, to uncover the most ideally suited site to create a restorative environment.
Resumo:
A poster of this paper will be presented at the 25th International Conference on Parallel Architecture and Compilation Technology (PACT ’16), September 11-15, 2016, Haifa, Israel.
Resumo:
This dissertation project comprises three major operatic performances and an accompanying document; a performance study which surveys aspects of sexism and imperialism as represented in three operas written over the last three centuries by examining the implications of prejudice through research as well as through performances of the major roles found in the operas. Mr. Eversole performed the role of Sharpless in the 2014 Castleton Festival production of Madama Butterfly (music by Giacomo Puccini, libretto by Luigi Illica and Giuseppe Giacosa), conducted by Bradley Moore. In 2015, Mr. Eversole sang the title role in four performances of Mozart and Da Ponte’s Don Giovanni with the Maryland Opera Studio at the Clarice Smith Performing Arts Center, conducted by Craig Kier. Also as part of the Maryland Opera Studio 2015-16 season, Mr. Eversole appeared as Oscar Hubbard in four performances of Marc Blitzstein’s Regina, an adaptation of Lillian Hellman’s 1939 play, The Little Foxes. These performances were also conducted by Craig Kier. The accompanying research document discusses significant issues of cultural, geographical, and sexual hegemony as they relate to each opera. It examines the plots and characters of the operas from a postcolonial and feminist perspective, and takes a moral stance against imperialism, sexism, domestic abuse, and in general, the exploitation of women and of the colonized by the socially privileged and powerful. Recordings of all three operas can be accessed at the University of Maryland Hornbake Library. They are: Giacomo Puccini’s Madama Butterfly (the role of Sharpless) July 20, 2014, Castleton Festival production, Bradley Moore, Conductor Castleton, Virginia Wolfgang Amadeus Mozart’s Don Giovanni (title role) November 22nd, 2015, Maryland Opera Studio, Craig Kier, Conductor Clarice Smith Performing Arts Center, UMD Marc Blitzstein’s Regina, (Oscar Hubbard) April 8th, 8016, Maryland Opera Studio, Craig Kier, Conductor Clarice Smith Performing Arts Center, UMD
Resumo:
Title of Dissertation: THE EFFECT OF SCHOOL CLIMATE (STUDENT AND TEACHER ENGAGEMENT) ON STUDENT PERFORMANCE Kenneth L. Marcus, Doctor of Education, 2016 Directed By: Dr. Thomas Davis, Assistant Professor, Education Policy and Leadership, Department of Teaching and Learning, Policy and Leadership This quantitative research study was designed to compute correlations/relationships of student engagement and student achievement of fifth grade students. Secondary information was collected on the relationship of FARMS, type of school, hope, and well-being on student achievement. School leaders are charged with ensuring that students achieve academically and demonstrate their ability by meeting identified targets on state and district mandated assessments. Due to increased pressure to meet targets, principals implement academic interventions to improve student learning and overlook the benefits of a positive school climate. This study has provided information on the impact of school climate on student achievement. To conduct this study, the researcher collected two sets of public fifth grade data (Gallup Survey student engagement scores and DSA reading, mathematics, and science scores) to determine the relationship of student performance and school climate. Secondary data were also collected on teacher engagement and the percentage of students receiving FARMS to determine the effect on students. The findings from this study reinforced the belief that school climate can have a positive effect on student achievement. This study contributed quantitative data about the relationship between school climate and school achievement.
Resumo:
In this study, I experimentally analyzed the performance of a commercial semi-welded plate type heat exchanger (PHE) for use with ammonia systems. I determined performance parameters such as overall heat transfer coefficient, capacity, and pressure drop of the semi-welded PHE. This was analyzed by varying different parameters which demonstrated changes in overall heat transfer coefficient, capacity, and pressure drop. Both water and ammonia flow rates to the semi-welded PHE were varied independently, and analyzed in order to understand how changes in flow rates affected performance. Inlet water temperature was also varied, in order to understand how raising condenser water inlet temperature would affect performance. Finally, pressure drop was monitored to better understand the performance limitations of the semi-welded PHE. Testing of the semi-welded will give insight as to the performance of the semi-welded PHE in a potential ocean thermal energy conversion system, and whether the semi-welded PHE is a viable choice for use as an ammonia condenser.
Resumo:
Despite the organizational benefits of treating employees fairly, both anecdotal and empirical evidence suggest that managers do not behave fairly towards their employees in a consistent manner. As treating employees fairly takes up personal resources such as time, effort, and attention, I argue that when managers face high workloads (i.e., high amounts of work and time pressure), they are unable to devote such personal resources to effectively meet both core technical task requirements and treat employees fairly. I propose that in general, managers tend to view their core technical task performance as more important than being fair in their dealings with employees; as a result, when faced with high workloads, they tend to prioritize the former at the expense of the latter. I also propose that managerial fairness will suffer more as a result of heightened workloads than will core technical task performance, unless managers perceive their organization to explicitly reward fair treatment of employees. I find support for my hypotheses across three studies: two experimental studies (with online participants and students respectively) and one field study of managers from a variety of organizations. I discuss the implications of studying fairness in the wider context of managers’ complex role in organizations to the fairness and managerial work demands literatures.
Resumo:
Cold in-place recycling (CIR) and cold central plant recycling (CCPR) of asphalt concrete (AC) and/or full-depth reclamation (FDR) of AC and aggregate base are faster and less costly rehabilitation alternatives to conventional reconstruction for structurally distressed pavements. This study examines 26 different rehabilitation projects across the USA and Canada. Field cores from these projects were tested for dynamic modulus and repeated load permanent deformation. These structural characteristics are compared to reference values for hot mix asphalt (HMA). A rutting sensitivity analysis was performed on two rehabilitation scenarios with recycled and conventional HMA structural overlays in different climatic conditions using the Mechanistic Empirical Pavement Design (MEPDG). The cold-recycled scenarios exhibited performance similar to that of HMA overlays for most cases. The exceptions were the cases with thin HMA wearing courses and/or very poor cold-recycled material quality. The overall conclusion is that properly designed CIR/FDR/CCPR cold-recycled materials are a viable alternative to virgin HMA materials.
Resumo:
Microfluidic technologies have great potential to help create automated, cost-effective, portable devices for rapid point of care (POC) diagnostics in diverse patient settings. Unfortunately commercialization is currently constrained by the materials, reagents, and instrumentation required and detection element performance. While most microfluidic studies utilize planar detection elements, this dissertation demonstrates the utility of porous volumetric detection elements to improve detection sensitivity and reduce assay times. Impedemetric immunoassays were performed utilizing silver enhanced gold nanoparticle immunoconjugates (AuIgGs) and porous polymer monolith or silica bead bed detection elements within a thermoplastic microchannel. For a direct assay with 10 µm spaced electrodes the detection limit was 0.13 fM AuIgG with a 3 log dynamic range. The same assay was performed with electrode spacing of 15, 40, and 100 µm with no significant difference between configurations. For a sandwich assay the detection limit was10 ng/mL with a 4 log dynamic range. While most impedemetric assays rely on expensive high resolution electrodes to enhance planar senor performance, this study demonstrates the employment of porous volumetric detection elements to achieve similar performance using lower resolution electrodes and shorter incubation times. Optical immunoassays were performed using porous volumetric capture elements perfused with refractive index matching solutions to limit light scattering and enhance signal. First, fluorescence signal enhancement was demonstrated with a porous polymer monolith within a silica capillary. Next, transmission enhancement of a direct assay was demonstrated by infusing aqueous sucrose solutions through silica bead beds with captured silver enhanced AuIgGs yielding a detection limit of 0.1 ng/mL and a 5 log dynamic range. Finally, ex situ functionalized porous silica monolith segments were integrated into thermoplastic channels for a reflectance based sandwich assay yielding a detection limit of 1 ng/mL and a 5 log dynamic range. The simple techniques for optical signal enhancement and ex situ element integration enable development of sensitive, multiplexed microfluidic sensors. Collectively the demonstrated experiments validate the use of porous volumetric detection elements to enhance impedemetric and optical microfluidic assays. The techniques rely on commercial reagents, materials compatible with manufacturing, and measurement instrumentation adaptable to POC diagnostics.
Resumo:
Mental stress is known to disrupt the execution of motor performance and can lead to decrements in the quality of performance, however, individuals have shown significant differences regarding how fast and well they can perform a skilled task according to how well they can manage stress and emotion. The purpose of this study was to advance our understanding of how the brain modulates emotional reactivity under different motivational states to achieve differential performance in a target shooting task that requires precision visuomotor coordination. In order to study the interactions in emotion regulatory brain areas (i.e. the ventral striatum, amygdala, prefrontal cortex) and the autonomic nervous system, reward and punishment interventions were employed and the resulting behavioral and physiological responses contrasted to observe the changes in shooting performance (i.e. shooting accuracy and stability of aim) and neuro-cognitive processes (i.e. cognitive load and reserve) during the shooting task. Thirty-five participants, aged 18 to 38 years, from the Reserve Officers’ Training Corp (ROTC) at the University of Maryland were recruited to take 30 shots at a bullseye target in three different experimental conditions. In the reward condition, $1 was added to their total balance for every 10-point shot. In the punishment condition, $1 was deducted from their total balance if they did not hit the 10-point area. In the neutral condition, no money was added or deducted from their total balance. When in the reward condition, which was reportedly most enjoyable and least stressful of the conditions, heart rate variability was found to be positively related to shooting scores, inversely related to variability in shooting performance and positively related to alpha power (i.e. less activation) in the left temporal region. In the punishment (and most stressful) condition, an increase in sympathetic response (i.e. increased LF/HF ratio) was positively related to jerking movements as well as variability of placement (on the target) in the shots taken. This, coupled with error monitoring activity in the anterior cingulate cortex, suggests evaluation of self-efficacy might be driving arousal regulation, thus affecting shooting performance. Better performers showed variable, increasing high-alpha power in the temporal region during the aiming period towards taking the shot which could indicate an adaptive strategy of engagement. They also showed lower coherence during hit shots than missed shots which was coupled with reduced jerking movements and better precision and accuracy. Frontal asymmetry measures revealed possible influence of the prefrontal lobe in driving this effect in reward and neutral conditions. The possible interactions, reasons behind these findings and implications are discussed.
Resumo:
Coprime and nested sampling are well known deterministic sampling techniques that operate at rates significantly lower than the Nyquist rate, and yet allow perfect reconstruction of the spectra of wide sense stationary signals. However, theoretical guarantees for these samplers assume ideal conditions such as synchronous sampling, and ability to perfectly compute statistical expectations. This thesis studies the performance of coprime and nested samplers in spatial and temporal domains, when these assumptions are violated. In spatial domain, the robustness of these samplers is studied by considering arrays with perturbed sensor locations (with unknown perturbations). Simplified expressions for the Fisher Information matrix for perturbed coprime and nested arrays are derived, which explicitly highlight the role of co-array. It is shown that even in presence of perturbations, it is possible to resolve $O(M^2)$ under appropriate conditions on the size of the grid. The assumption of small perturbations leads to a novel ``bi-affine" model in terms of source powers and perturbations. The redundancies in the co-array are then exploited to eliminate the nuisance perturbation variable, and reduce the bi-affine problem to a linear underdetermined (sparse) problem in source powers. This thesis also studies the robustness of coprime sampling to finite number of samples and sampling jitter, by analyzing their effects on the quality of the estimated autocorrelation sequence. A variety of bounds on the error introduced by such non ideal sampling schemes are computed by considering a statistical model for the perturbation. They indicate that coprime sampling leads to stable estimation of the autocorrelation sequence, in presence of small perturbations. Under appropriate assumptions on the distribution of WSS signals, sharp bounds on the estimation error are established which indicate that the error decays exponentially with the number of samples. The theoretical claims are supported by extensive numerical experiments.