3 resultados para very slow

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaFe10.4Co0.8Ti0.8O19 magnetic fine particles exhibit most of the features attributed to glassy behavior, e.g., irreversibility in the hysteresis loops and in the zero-field-cooling and field-cooling curves extends up to very high fields, and aging and magnetic training phenomena occur. However, the multivalley energy structure of the glassy state can be strongly modified by a field-cooling process at a moderate field. Slow relaxation experiments demonstrate that the intrinsic energy barriers of the individual particles dominate the behavior of the system at high cooling fields, while the energy states corresponding to collective glassy behavior play the dominant role at low cooling fields.