5 resultados para uniaxial anisotropy
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
In this paper we discuss both theoretical and experimental results on the time dependence of the heat capacity of oriented Mn12 magnetic clusters when a magnetic field is applied along their easy axis. Our calculations are based on the existence of two contributions. The first one is associated with the thermal populations of the 21 different Sz levels in the two potential wells of the magnetic uniaxial anisotropy and the second one is related to the transitions between the Sz levels. We compare our theoretical predictions with experimental data on the heat capacity for different resolution times at different fields and temperatures.
Resumo:
ches. The critical point is characterized by a set of critical exponents, which are consistent with the universal values proposed from the study of other simpler models.
Resumo:
In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.
Resumo:
We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.
Resumo:
High-sensitivity electron paramagnetic resonance experiments have been carried out in fresh and stressed Mn12 acetate single crystals for frequencies ranging from 40 GHz up to 110 GHz. The high number of crystal dislocations formed in the stressing process introduces a E(Sx2-Sy2) transverse anisotropy term in the spin Hamiltonian. From the behavior of the resonant absorptions on the applied transverse magnetic field we have obtained an average value for E=22 mK, corresponding to a concentration of dislocations per unit cell of c=10-3.