9 resultados para surface structure
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
Geometric parameters of binary (1:1) PdZn and PtZn alloys with CuAu-L10 structure were calculated with a density functional method. Based on the total energies, the alloys are predicted to feature equal formation energies. Calculated surface energies of PdZn and PtZn alloys show that (111) and (100) surfaces exposing stoichiometric layers are more stable than (001) and (110) surfaces comprising alternating Pd (Pt) and Zn layers. The surface energy values of alloys lie between the surface energies of the individual components, but they differ from their composition weighted averages. Compared with the pure metals, the valence d-band widths and the Pd or Pt partial densities of states at the Fermi level are dramatically reduced in PdZn and PtZn alloys. The local valence d-band density of states of Pd and Pt in the alloys resemble that of metallic Cu, suggesting that a similar catalytic performance of these systems can be related to this similarity in the local electronic structures.
Resumo:
We have investigated edge modes of different multipolarity sustained by quantum antidots at zero magnetic field. The ground state of the antidot is described within a local-density-functional formalism. Two sum rules, which are exact within this formalism, have been derived and used to evaluate the energy of edge collective modes as a function of the surface density and the size of the antidot.
Resumo:
The interface of MgO/Ag(001) has been studied with density functional theory applied to slabs. We have found that regular MgO films show a small adhesion to the silver substrate, the binding can be increased in off-stoichiometric regimes, either by the presence of O vacancies at the oxide film or by a small excess of O atoms at the interface between the ceramic to the metal. By means of theoretical methods, the scanning tunneling microscopy signatures of these films is also analyzed in some detail. For defect free deposits containing 1 or 2 ML and at low voltages, tunnelling takes place from the surface Ag substrate, and at large positive voltages Mg atoms are imaged. If defects, oxygen vacancies, are present on the surface of the oxide they introduce much easier channels for tunnelling resulting in big protrusions and controlling the shape of the image, the extra O stored at the interface can also be detected for very thin films.
Resumo:
We analyze how the spatial localization properties of pairing correlations are changing in a major neutron shell of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the chemical potential is close to a low or a high angular momentum level and has little sensitivity to whether the pairing force acts at the surface or in the bulk. The pairing density averaged over one major shell is, however, rather flat, exhibiting little dependence on the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic chain 100-132Sn are presented for demonstration purposes.