1 resultado para solution structure
em Diposit Digital de la UB - Universidade de Barcelona
Filtro por publicador
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (8)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (11)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (56)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (99)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (143)
- Institutional Repository of Leibniz University Hannover (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (4)
- National Center for Biotechnology Information - NCBI (42)
- Nottingham eTheses (3)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (23)
- Queensland University of Technology - ePrints Archive (268)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (83)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (13)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (11)
- University of Connecticut - USA (1)
- University of Michigan (1)
- University of Queensland eSpace - Australia (31)
- University of Washington (2)
Resumo:
Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schrödinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Castaño, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is also treated. A structure combining features of both of these is investigated