3 resultados para radial distribution function
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
Electron transport in a self-consistent potential along a ballistic two-terminal conductor has been investigated. We have derived general formulas which describe the nonlinear current-voltage characteristics, differential conductance, and low-frequency current and voltage noise assuming an arbitrary distribution function and correlation properties of injected electrons. The analytical results have been obtained for a wide range of biases: from equilibrium to high values beyond the linear-response regime. The particular case of a three-dimensional Fermi-Dirac injection has been analyzed. We show that the Coulomb correlations are manifested in the negative excess voltage noise, i.e., the voltage fluctuations under high-field transport conditions can be less than in equilibrium.
Resumo:
We analyze how the spatial localization properties of pairing correlations are changing in a major neutron shell of heavy nuclei. It is shown that the radial distribution of the pairing density depends strongly on whether the chemical potential is close to a low or a high angular momentum level and has little sensitivity to whether the pairing force acts at the surface or in the bulk. The pairing density averaged over one major shell is, however, rather flat, exhibiting little dependence on the pairing force. Hartree-Fock-Bogoliubov calculations for the isotopic chain 100-132Sn are presented for demonstration purposes.
Resumo:
A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.