2 resultados para anomalous subdiffusion equation
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
We predict the existence of an anomalous crossover between thermal and shot noise in macroscopic diffusive conductors. We first show that, besides thermal noise, these systems may also exhibit shot noise due to fluctuations of the total number of carriers in the system. Then we show that at increasing currents the crossover between the two noise behaviors is anomalous, in the sense that the low-frequency current spectral density displays a region with a superlinear dependence on the current up to a cubic law. The anomaly is due to the nontrivial coupling in the presence of the long-range Coulomb interaction among the three time scales relevant to the phenomenon, namely, diffusion, transit, and dielectric relaxation time.
Resumo:
We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick model using the technique of the generating function. Explicit solutions for one-time observables (like the energy) and two-time observables (like the correlation and response function) are obtained. We show that the crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approximation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator with an effective renormalized mass.