12 resultados para anomalous electron magnetic moment in the context of the LW electrodynamics

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CuF2 is known to be an antiferromagnetic compound with a weak ferromagnetism due to the anisotropy of its monoclinic unit cell (Dzialoshinsky-Moriya mechanism). We investigate the magnetic ordering of this compound by means of ab initio periodic unrestricted Hartree-Fock calculations and by cluster calculations which employ state-of-the-art configuration interaction expansions and modern density functional theory techniques. The combined use of periodic and cluster models permits us to firmly establish that the antiferromagnetic order arises from the coupling of one-dimensional subunits which themselves exhibit a very small ferromagnetic coupling between Cu neighbor cations. This magnetic order could be anticipated from the close correspondence between CuF2 and rutile crystal structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and magnetic transformations in the Heusler-based system Ni0.50Mn0.50¿xSnx are studied by x-ray diffraction, optical microscopy, differential scanning calorimetry, and magnetization. The structural transformations are of austenitic-martensitic character. The austenite state has an L21 structure, whereas the structures of the martensite can be 10M , 14M , or L10 depending on the Sn composition. For samples that undergo martensitic transformations below and around room temperature, it is observed that the magnetic exchange in both parent and product phases is ferromagnetic, but the ferromagnetic exchange, characteristic of each phase, is found to be of different strength. This gives rise to different Curie temperatures for the austenitic and martensitic states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a systematic study of ground state and spectroscopic properties of many-electron nanoscopic quantum rings. Addition energies at zero magnetic field (B) and electrochemical potentials as a function of B are given for a ring hosting up to 24 electrons. We find discontinuities in the excitation energies of multipole spin and charge density modes, and a coupling between the charge and spin density responses that allow to identify the formation of ferromagnetic ground states in narrow magnetic field regions. These effects can be observed in Raman experiments, and are related to the fractional Aharonov-Bohm oscillations of the energy and of the persistent current in the ring

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the magneto-optical (MO) spectral response of Co nanoparticles embedded in MgO as a function of their size and concentration in the spectral range from 1.4 to 4.3 eV is presented. The nanoparticle layers were obtained by sputtering at different deposition temperatures. Transmission electron microscopy measurements show that the nanoparticles have a complex structure which consists of a crystalline core having a hexagonal close-packed structure and an amorphous crust. Using an effective-medium approximation we have obtained the MO constants of the Co nanoparticles. These MO constants are different from those of continuous Co layers and depend on the size of the crystalline core. We associate these changes with the size effect of the intraband contribution to the MO constants, related to a reduction of the relaxation time of the electrons into the nanoparticles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transport and magnetotransport properties of the metallic and ferromagnetic SrRuO3 (SRO) and the metallic and paramagnetic LaNiO3 (LNO) epitaxial thin films have been investigated in fields up to 55 T at temperatures down to 1.8 K . At low temperatures both samples display a well-defined resistivity minimum. We argue that this behavior is due to the increasing relevance of quantum corrections to the conductivity (QCC) as temperature is lowered; this effect being particularly relevant in these oxides due to their short mean free path. However, it is not straightforward to discriminate between contributions of weak localization and renormalization of electron-electron interactions to the QCC through temperature dependence alone. We have taken advantage of the distinct effect of a magnetic field on both mechanisms to demonstrate that in ferromagnetic SRO the weak-localization contribution is suppressed by the large internal field leaving only renormalized electron-electron interactions, whereas in the nonmagnetic LNO thin films the weak-localization term is relevant.