6 resultados para Theoretical justification
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
Màster Oficial en Química Teòrica i Computacional Curs: 2008-2009, Director: Juan J. Novoa Vide
Resumo:
The origin of magnetic coupling in KNiF3 and K2 NiF4 is studied by means of an ab initio cluster model approach. By a detailed study of the mapping between eigenstates of the exact nonrelativistic and spin model Hamiltonians it is possible to obtain the magnetic coupling constant J and to compare ab initio cluster-model values with those resulting from ab initio periodic Hartree-Fock calculations. This comparison shows that J is strongly determined by two-body interactions; this is a surprising and unexpected result. The importance of the ligands surrounding the basic metal-ligand-metal interacting unit is reexamined by using two different partitions and the constrained space orbital variation method of analysis. This decomposition enables us to show that this effect is basically environmental. Finally, dynamical electronic correlation effects have found to be critical in determining the final value of the magnetic coupling constant.
Resumo:
A theoretical density-functional study has been carried out to analyze the exchange coupling in the chains of CuGeO3 using discrete models. The results show a good agreement with the experimental exchange coupling constant (J) together with a strong dependence of J with the Cu-O-Cu angle. The calculation of the J values for a distorted model indicates a larger degree of dimerization than those reported previously.
Resumo:
The mechanism of generation of atomic Na and K from SiO2 samples has been studied using explicitly correlated wave function and density functional theory cluster calculations. Possible pathways for the photon and electron stimulated desorption of Na and K atoms from silicates are proposed, thus providing new insight on the generation of the tenuous Na and K atmosphere of the Moon.