2 resultados para Quantum harmonic oscillator
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
Semiclassical theories such as the Thomas-Fermi and Wigner-Kirkwood methods give a good description of the smooth average part of the total energy of a Fermi gas in some external potential when the chemical potential is varied. However, in systems with a fixed number of particles N, these methods overbind the actual average of the quantum energy as N is varied. We describe a theory that accounts for this effect. Numerical illustrations are discussed for fermions trapped in a harmonic oscillator potential and in a hard-wall cavity, and for self-consistent calculations of atomic nuclei. In the latter case, the influence of deformations on the average behavior of the energy is also considered.
Resumo:
We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick model using the technique of the generating function. Explicit solutions for one-time observables (like the energy) and two-time observables (like the correlation and response function) are obtained. We show that the crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approximation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator with an effective renormalized mass.