6 resultados para Quantum critical point
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.
Resumo:
ic first-order transition line ending in a critical point. This critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks in the specific heat, not always associated with a true phase transition. The main conclusion is that premartensitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong enough to freeze the involved mode phonon. The implication of the results in relation to the available experimental data is discussed.
Resumo:
ches. The critical point is characterized by a set of critical exponents, which are consistent with the universal values proposed from the study of other simpler models.
Resumo:
Spanning avalanches in the 3D Gaussian Random Field Ising Model (3D-GRFIM) with metastable dynamics at T=0 have been studied. Statistical analysis of the field values for which avalanches occur has enabled a Finite-Size Scaling (FSS) study of the avalanche density to be performed. Furthermore, a direct measurement of the geometrical properties of the avalanches has confirmed an earlier hypothesis that several types of spanning avalanches with two different fractal dimensions coexist at the critical point. We finally compare the phase diagram of the 3D-GRFIM with metastable dynamics with the same model in equilibrium at T=0.
Resumo:
A density-functional self-consistent calculation of the ground-state electronic density of quantum dots under an arbitrary magnetic field is performed. We consider a parabolic lateral confining potential. The addition energy, E(N+1)-E(N), where N is the number of electrons, is compared with experimental data and the different contributions to the energy are analyzed. The Hamiltonian is modeled by a density functional, which includes the exchange and correlation interactions and the local formation of Landau levels for different equilibrium spin populations. We obtain an analytical expression for the critical density under which spontaneous polarization, induced by the exchange interaction, takes place.