9 resultados para Phase rule and equilibrium.
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
We investigate the depinning transition occurring in dislocation assemblies. In particular, we consider the cases of regularly spaced pileups and low-angle grain boundaries interacting with a disordered stress landscape provided by solute atoms, or by other immobile dislocations present in nonactive slip systems. Using linear elasticity, we compute the stress originated by small deformations of these assemblies and the corresponding energy cost in two and three dimensions. Contrary to the case of isolated dislocation lines, which are usually approximated as elastic strings with an effective line tension, the deformations of a dislocation assembly cannot be described by local elastic interactions with a constant tension or stiffness. A nonlocal elastic kernel results as a consequence of long-range interactions between dislocations. In light of this result, we revise statistical depinning theories of dislocation assemblies and compare the theoretical results with numerical simulations and experimental data.
Resumo:
A model has been developed for evaluating grain size distributions in primary crystallizations where the grain growth is diffusion controlled. The body of the model is grounded in a recently presented mean-field integration of the nucleation and growth kinetic equations, modified conveniently in order to take into account a radius-dependent growth rate, as occurs in diffusion-controlled growth. The classical diffusion theory is considered, and a modification of this is proposed to take into account interference of the diffusion profiles between neighbor grains. The potentiality of the mean-field model to give detailed information on the grain size distribution and transformed volume fraction for transformations driven by nucleation and either interface- or diffusion-controlled growth processes is demonstrated. The model is evaluated for the primary crystallization of an amorphous alloy, giving an excellent agreement with experimental data. Grain size distributions are computed, and their properties are discussed.
Resumo:
We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick model using the technique of the generating function. Explicit solutions for one-time observables (like the energy) and two-time observables (like the correlation and response function) are obtained. We show that the crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approximation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator with an effective renormalized mass.
Resumo:
We propose a short-range generalization of the p-spin interaction spin-glass model. The model is well suited to test the idea that an entropy collapse is at the bottom line of the dynamical singularity encountered in structural glasses. The model is studied in three dimensions through Monte Carlo simulations, which put in evidence fragile glass behavior with stretched exponential relaxation and super-Arrhenius behavior of the relaxation time. Our data are in favor of a Vogel-Fulcher behavior of the relaxation time, related to an entropy collapse at the Kauzmann temperature. We, however, encounter difficulties analogous to those found in experimental systems when extrapolating thermodynamical data at low temperatures. We study the spin-glass susceptibility, investigating the behavior of the correlation length in the system. We find that the increase of the relaxation time is accompanied by a very slow growth of the correlation length. We discuss the scaling properties of off-equilibrium dynamics in the glassy regime, finding qualitative agreement with the mean-field theory.
Resumo:
We have investigated the structure of double quantum dots vertically coupled at zero magnetic field within local-spin-density functional theory. The dots are identical and have a finite width, and the whole system is axially symmetric. We first discuss the effect of thickness on the addition spectrum of one single dot. Next we describe the structure of coupled dots as a function of the interdot distance for different electron numbers. Addition spectra, Hund's rule, and molecular-type configurations are discussed. It is shown that self-interaction corrections to the density-functional results do not play a very important role in the calculated addition spectra
Resumo:
The elastic moduli of vortex crystals in anisotropic superconductors are frequently involved in the investigation of their phase diagram and transport properties. We provide a detailed analysis of the harmonic eigenvalues (normal modes) of the vortex lattice for general values of the magnetic field strength, going beyond the elastic continuum regime. The detailed behavior of these wave-vector-dependent eigenvalues within the Brillouin zone (BZ), is compared with several frequently used approximations that we also recalculate. Throughout the BZ, transverse modes are less costly than their longitudinal counterparts, and there is an angular dependence which becomes more marked close to the zone boundary. Based on these results, we propose an analytic correction to the nonlocal continuum formulas which fits quite well the numerical behavior of the eigenvalues in the London regime. We use this approximate expression to calculate thermal fluctuations and the full melting line (according to Lindeman's criterion) for various values of the anisotropy parameter.