3 resultados para PHASE SEPARATION
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
We present a lattice model to study the equilibrium phase diagram of ordered alloys with one magnetic component that exhibits a low temperature phase separation between paramagnetic and ferromagnetic phases. The model is constructed from the experimental facts observed in Cu3-xAlMnx and it includes coupling between configurational and magnetic degrees of freedom that are appropriate for reproducing the low temperature miscibility gap. The essential ingredient for the occurrence of such a coexistence region is the development of ferromagnetic order induced by the long-range atomic order of the magnetic component. A comparative study of both mean-field and Monte Carlo solutions is presented. Moreover, the model may enable the study of the structure of ferromagnetic domains embedded in the nonmagnetic matrix. This is relevant in relation to phenomena such as magnetoresistance and paramagnetism
Resumo:
In a recent paper [Phys. Rev. B 50, 3477 (1994)], P. Fratzl and O. Penrose present the results of the Monte Carlo simulation of the spinodal decomposition problem (phase separation) using the vacancy dynamics mechanism. They observe that the t1/3 growth regime is reached faster than when using the standard Kawasaki dynamics. In this Comment we provide a simple explanation for the phenomenon based on the role of interface diffusion, which they claim is irrelevant for the observed behavior.
Resumo:
We present a continuum model for doped manganites which consist of two species of quantum spin-1 / 2 fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be considerably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting, canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being stable against phase separation. There are also regions in the phase diagram where phase separation occurs