1 resultado para Moment Closure
em Diposit Digital de la UB - Universidade de Barcelona
Filtro por publicador
- Aberdeen University (3)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (15)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (9)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (120)
- Boston University Digital Common (1)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (69)
- CentAUR: Central Archive University of Reading - UK (34)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (30)
- Cochin University of Science & Technology (CUSAT), India (4)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Archives@Colby (6)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (5)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (26)
- Greenwich Academic Literature Archive - UK (3)
- Helda - Digital Repository of University of Helsinki (4)
- Hospitais da Universidade de Coimbra (1)
- Indian Institute of Science - Bangalore - Índia (50)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (50)
- Queensland University of Technology - ePrints Archive (275)
- Repositorio Academico Digital UANL (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- Research Open Access Repository of the University of East London. (1)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- School of Medicine, Washington University, United States (2)
- Scientific Open-access Literature Archive and Repository (2)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (5)
- Université de Montréal, Canada (12)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (3)
- University of Michigan (33)
- University of Queensland eSpace - Australia (32)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick model using the technique of the generating function. Explicit solutions for one-time observables (like the energy) and two-time observables (like the correlation and response function) are obtained. We show that the crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approximation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator with an effective renormalized mass.