2 resultados para Hf-in-zircon

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural saturation and stability, the energy gap, and the density of states of a series of small, silicon-based clusters have been studied by means of the PM3 and some ab initio (HF/6-31G* and 6-311++G**, CIS/6-31G* and MP2/6-31G*) calculations. It is shown that in order to maintain a stable nanometric and tetrahedral silicon crystallite and remove the gap states, the saturation atom or species such as H, F, Cl, OH, O, or N is necessary, and that both the cluster size and the surface species affect the energetic distribution of the density of states. This research suggests that the visible luminescence in the silicon-based nanostructured material essentially arises from the nanometric and crystalline silicon domains but is affected and protected by the surface species, and we have thus linked most of the proposed mechanisms of luminescence for the porous silicon, e.g., the quantum confinement effect due to the cluster size and the effect of Si-based surface complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We explore the ability of the recently established quasilocal density functional theory for describing the isoscalar giant monopole resonance. Within this theory we use the scaling approach and perform constrained calculations for obtaining the cubic and inverse energy weighted moments (sum rules) of the RPA strength. The meaning of the sum rule approach in this case is discussed. Numerical calculations are carried out using Gogny forces and an excellent agreement is found with HF+RPA results previously reported in literature. The nuclear matter compression modulus predicted in our model lies in the range 210230 MeV which agrees with earlier findings. The information provided by the sum rule approach in the case of nuclei near the neutron drip line is also discussed.