6 resultados para HEISENBERG PYROCHLORE ANTIFERROMAGNET
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
Existence of collective effects in magnetic coupling in ionic solids is studied by mapping spin eigenstates of the Heisenberg and exact nonrelativistic Hamiltonians on cluster models representing KNiF3, K2NiF4, NiO, and La2CuO4. Ab initio techniques are used to estimate the Heisenberg constant J. For clusters with two magnetic centers, the values obtained are about the same for models having more magnetic centers. The absence of collective effects in J strongly suggests that magnetic interactions in this kind of ionic solids are genuinely local and entangle only the two magnetic centers involved.
Resumo:
The ab initio cluster model approach has been used to study the electronic structure and magnetic coupling of KCuF3 and K2CuF4 in their various ordered polytype crystal forms. Due to a cooperative Jahn-Teller distortion these systems exhibit strong anisotropies. In particular, the magnetic properties strongly differ from those of isomorphic compounds. Hence, KCuF3 is a quasi-one-dimensional (1D) nearest neighbor Heisenberg antiferromagnet whereas K2CuF4 is the only ferromagnet among the K2MF4 series of compounds (M=Mn, Fe, Co, Ni, and Cu) behaving all as quasi-2D nearest neighbor Heisenberg systems. Different ab initio techniques are used to explore the magnetic coupling in these systems. All methods, including unrestricted Hartree-Fock, are able to explain the magnetic ordering. However, quantitative agreement with experiment is reached only when using a state-of-the-art configuration interaction approach. Finally, an analysis of the dependence of the magnetic coupling constant with respect to distortion parameters is presented.
Resumo:
Distortions in a family of conjugated polymers are studied using two complementary approaches: within a many-body valence bond approach using a transfer-matrix technique to treat the Heisenberg model of the systems, and also in terms of the tight-binding band-theoretic model with interactions limited to nearest neighbors. The computations indicate that both methods predict the presence or absence of the same distortions in most of the polymers studied.
Resumo:
Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians.
Resumo:
The role of the bridging ligand on the effective Heisenberg coupling parameters is analyzed in detail. This analysis strongly suggests that the ligand-to-metal charge transfer excitations are responsible for a large part of the final value of the magnetic coupling constant. This permits us to suggest a variant of the difference dedicated configuration interaction (DDCI) method, presently one of the most accurate and reliable for the evaluation of magnetic effective interactions. This method treats the bridging ligand orbitals mediating the interaction at the same level than the magnetic orbitals and preserves the high quality of the DDCI results while being much less computationally demanding. The numerical accuracy of the new approach is illustrated on various systems with one or two magnetic electrons per magnetic center. The fact that accurate results can be obtained using a rather reduced configuration interaction space opens the possibility to study more complex systems with many magnetic centers and/or many electrons per center.