29 resultados para HARD MAGNETIC-PROPERTIES

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study of LaxBi1-xMnO3 thin films grown on SrTiO3 substrates is reported. It is shown that these films grow epitaxially in a narrow pressure-temperature range. A detailed structural and compositional characterization of the films is performed within the growth window. The structure and the magnetization of this system are investigated. We find a clear correlation between the magnetization and the unit-cell volume that we ascribe to Bi deficiency and the resultant introduction of a mixed valence on the Mn ions. On these grounds, we show that the reduced magnetization of LaxBi1-xMnO3 thin films compared to the bulk can be explained quantitatively by a simple model, taking into account the deviation from nominal composition and the Goodenough-Kanamori-Anderson rules of magnetic interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnetic properties of BaFe12O19 and BaFe10.2Sn0.74Co0.66O19 single crystals have been investigated in the temperature range (1.8 to 320 K) with a varying field from -5 to +5 T applied parallel and perpendicular to the c axis. Low-temperature magnetic relaxation, which is ascribed to the domain-wall motion, was performed between 1.8 and 15 K. The relaxation of magnetization exhibits a linear dependence on logarithmic time. The magnetic viscosity extracted from the relaxation data, decreases linearly as temperature goes down, which may correspond to the thermal depinning of domain walls. Below 2.5 K, the viscosity begins to deviate from the linear dependence on temperature, tending to be temperature independent. The near temperature independence of viscosity suggests the existence of quantum tunneling of antiferromagnetic domain wall in this temperature range.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report on measurements of the adiabatic temperature change in the inverse magnetocaloric Ni50Mn34In16 alloy. It is shown that this alloy heats up with the application of a magnetic field around the Curie point due to the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric effect associated with the martensitic transition results in the unusual decrease of temperature by adiabatic magnetization. We also provide magnetization and specific heat data which enable to compare the measured temperature changes to the values indirectly computed from thermodynamic relationships. Good agreement is obtained for the conventional effect at the second-order paramagnetic-ferromagnetic phase transition. However, at the first-order structural transition the measured values at high fields are lower than the computed ones. Irreversible thermodynamics arguments are given to show that such a discrepancy is due to the irreversibility of the first-order martensitic transition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have observed a type of giant magnetoresistance (GMR) in magnetic granular Co10Cu90 alloys. The asymmetric GMR depends strongly on the size of magnetic Co particles, which exhibit superparamagnetic behavior at given measured temperature. The asymmetric GMR points to a metastable state that develops when the sample is field-cooled, which is lost after recycling. We propose that high-field cooling produces more effective parallel alignment of small unblocked Co particle moments and interfacial magnetizations, which contributes to the further decrease of the resistance in comparison with the samples zero-field-cooled, and then applied to the same field.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present an imaginary-time path-integral study of the problem of quantum decay of a metastable state of a uniaxial magnetic particle placed in the magnetic field at an arbitrary angle. Our findings agree with earlier results of Zaslavskii obtained by mapping the spin Hamiltonian onto a particle Hamiltonian. In the limit of low barrier, weak dependence of the decay rate on the angle is found, except for the field which is almost normal to the anisotropy axis, where the rate is sharply peaked, and for the field approaching the parallel orientation, where the rate rapidly goes to zero. This distinct angular dependence, together with the dependence of the rate on the field strength, provides an independent test for macroscopic spin tunneling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BaFe10.4Co0.8Ti0.8O19 magnetic fine particles exhibit most of the features attributed to glassy behavior, e.g., irreversibility in the hysteresis loops and in the zero-field-cooling and field-cooling curves extends up to very high fields, and aging and magnetic training phenomena occur. However, the multivalley energy structure of the glassy state can be strongly modified by a field-cooling process at a moderate field. Slow relaxation experiments demonstrate that the intrinsic energy barriers of the individual particles dominate the behavior of the system at high cooling fields, while the energy states corresponding to collective glassy behavior play the dominant role at low cooling fields.