5 resultados para GLASSY-POLYMERS

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of magnetic hysteresis loops in Cu-Al-Mn alloys of different Mn content at low temperatures are presented. The loops are smooth and continuous above a certain temperature, but exhibit a magnetization discontinuity below that temperature. Scaling analysis suggest that this system displays a disorder-induced phase transition line. Measurements allow one to determine the critical exponents ß=0.03±0.01 and ß¿=0.4±0.1, which coincide with those reported recently in a different system, thus supporting the existence of universality for disorder-induced critical points.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the effects of quantum fluctuations in mean-field quantum spin-glass models with pairwise interactions. We examine the nature of the quantum glass transition at zero temperature in a transverse field. In models (such as the random orthogonal model) where the classical phase transition is discontinuous an analysis using the static approximation reveals that the transition becomes continuous at zero temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BaFe10.4Co0.8Ti0.8O19 magnetic fine particles exhibit most of the features attributed to glassy behavior, e.g., irreversibility in the hysteresis loops and in the zero-field-cooling and field-cooling curves extends up to very high fields, and aging and magnetic training phenomena occur. However, the multivalley energy structure of the glassy state can be strongly modified by a field-cooling process at a moderate field. Slow relaxation experiments demonstrate that the intrinsic energy barriers of the individual particles dominate the behavior of the system at high cooling fields, while the energy states corresponding to collective glassy behavior play the dominant role at low cooling fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distortions in a family of conjugated polymers are studied using two complementary approaches: within a many-body valence bond approach using a transfer-matrix technique to treat the Heisenberg model of the systems, and also in terms of the tight-binding band-theoretic model with interactions limited to nearest neighbors. The computations indicate that both methods predict the presence or absence of the same distortions in most of the polymers studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Comment affirms that no phase transition occurs in spin-glass systems with an applied magnetic field. However, only according to the droplet model is this result expected. Other models do not predict this result and, consequently, it is under current discussion. In addition, we show how the experimental results obtained in our system correspond to a cluster glass rather than to a true spin glass.