2 resultados para Euler-Heisenberg-like model
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
An Ising-like model, with interactions ranging up to next-nearest-neighbor pairs, is used to simulate the process of interface alloying. Interactions are chosen to stabilize an intermediate "antiferromagnetic" ordered structure. The dynamics proceeds exclusively by atom-vacancy exchanges. In order to characterize the process, the time evolution of the width of the intermediate ordered region and the diffusion length is studied. Both lengths are found to follow a power-law evolution with exponents depending on the characteristic features of the model.
Resumo:
We study the analytical solution of the Monte Carlo dynamics in the spherical Sherrington-Kirkpatrick model using the technique of the generating function. Explicit solutions for one-time observables (like the energy) and two-time observables (like the correlation and response function) are obtained. We show that the crucial quantity which governs the dynamics is the acceptance rate. At zero temperature, an adiabatic approximation reveals that the relaxational behavior of the model corresponds to that of a single harmonic oscillator with an effective renormalized mass.