1 resultado para Electrical impedance tomography, Calderon problem, factorization method
em Diposit Digital de la UB - Universidade de Barcelona
Filtro por publicador
- Aberdeen University (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (17)
- Aston University Research Archive (22)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (37)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (34)
- Cochin University of Science & Technology (CUSAT), India (4)
- Coffee Science - Universidade Federal de Lavras (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (5)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (6)
- DigitalCommons@The Texas Medical Center (3)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Helda - Digital Repository of University of Helsinki (6)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (190)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico do Porto, Portugal (3)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (4)
- Publishing Network for Geoscientific & Environmental Data (11)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (302)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (107)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (1)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (19)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Algarve (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (3)
- Université de Montréal, Canada (1)
- University of Michigan (6)
- University of Queensland eSpace - Australia (20)
- University of Washington (3)
Resumo:
Electron wave motion in a quantum wire with periodic structure is treated by direct solution of the Schrödinger equation as a mode-matching problem. Our method is particularly useful for a wire consisting of several distinct units, where the total transfer matrix for wave propagation is just the product of those for its basic units. It is generally applicable to any linearly connected serial device, and it can be implemented on a small computer. The one-dimensional mesoscopic crystal recently considered by Ulloa, Castaño, and Kirczenow [Phys. Rev. B 41, 12 350 (1990)] is discussed with our method, and is shown to be a strictly one-dimensional problem. Electron motion in the multiple-stub T-shaped potential well considered by Sols et al. [J. Appl. Phys. 66, 3892 (1989)] is also treated. A structure combining features of both of these is investigated