2 resultados para Delta 14C
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
Delta isobar components in the nuclear many-body wave function are investigated for the deuteron, light nuclei (16O), and infinite nuclear matter within the framework of the coupled-cluster theory. The predictions derived for various realistic models of the baryon-baryon interaction are compared to each other. These include local (V28) and nonlocal meson exchange potentials (Bonn2000) but also a model recently derived by the Salamanca group accounting for quark degrees of freedom. The characteristic differences which are obtained for the NDelta and Delta Delta correlation functions are related to the approximation made in deriving the matrix elements for the baryon-baryon interaction.
Resumo:
The influence of Delta isobar components on the ground-state properties of nuclear systems is investigated for nuclear matter as well as finite nuclei. Many-body wave functions, including isobar configurations and binding energies, are evaluated employing the framework of the coupled-cluster theory. It is demonstrated that the effect of isobar configurations depends in a rather sensitive way on the model used for the baryon-baryon interaction. As examples for realistic baryon-baryon interactions with explicit inclusion of isobar channels we use the local (V28) and nonlocal meson-exchange potentials (Bonn2000) but also a model recently developed by the Salamanca group, which is based on a quark picture. The differences obtained for the nuclear observables are related to the treatment of the interaction, the pi-exchange contributions in particular, at high momentum transfers.