2 resultados para Darboux invariant

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we show that if the electrons in a quantum Hall sample are subjected to a constant electric field in the plane of the material, comparable in magnitude to the background magnetic field on the system of electrons, a multiplicity of edge states localized at different regions of space is produced in the sample. The actions governing the dynamics of these edge states are obtained starting from the well-known Schrödinger field theory for a system of nonrelativistic electrons, where on top of the constant background electric and magnetic fields, the electrons are further subject to slowly varying weak electromagnetic fields. In the regions between the edges, dubbed as the "bulk," the fermions can be integrated out entirely and the dynamics expressed in terms of a local effective action involving the slowly varying electromagnetic potentials. It is further shown how the bulk action is gauge noninvariant in a particular way, and how the edge states conspire to restore the U(1) electromagnetic gauge invariance of the system. In the edge action we obtain a heretofore unnoticed gauge-invariant term that depends on the particular edge. We argue that this term may be detected experimentally as different edges respond differently to a monochromatic probe due to this term

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show how macroscopic manifestations of P (and T) symmetry breaking can arise in a simple system subject to Aharonov-Bohm interactions. Specifically, we study the conductivity of a gas of charged particles moving through a dilute array of flux tubes. The interaction of the electrons with the flux tubes is taken to be of a purely Aharonov-Bohm type. We find that the system exhibits a nonzero transverse conductivity, i.e., a spontaneous Hall effect. This is in contrast to the fact that the cross sections for both scattering and bremsstrahlung (soft-photon emission) of a single electron from a flux tube are invariant under reflections. We argue that the asymmetry in the conductivity coefficients arises from many-body effects. On the other hand, the transverse conductivity has the same dependence on universal constants that appears in the quantum Hall effect, a result that we relate to the validity of the mean-field approximation.