5 resultados para Collective Households
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
We have investigated the fragmentation of collective modes in doped 4He drops in the framework of a finite-range density-functional theory, as well as the delocalization of the impurity inside the cluster. Our results indicate that the impurity is gradually delocalized inside the drop as the size of the latter increases. As an example, results are shown in the case of Xe-4HeN systems up to N=112.
Resumo:
Collective dynamic properties in Lennard-Jones crystals are investigated by molecular dynamics simulation. The study is focused on properties such as the dynamic structure factors, the longitudinal and transverse currents and the density of states. The influence on these properties of the structural disorder is analyzed by comparing the results for one-component crystals with those for liquids and supercooled liquids at analogous conditions. The effects of species-disorder on the collective properties of binary crystals are also discussed.
Resumo:
Existence of collective effects in magnetic coupling in ionic solids is studied by mapping spin eigenstates of the Heisenberg and exact nonrelativistic Hamiltonians on cluster models representing KNiF3, K2NiF4, NiO, and La2CuO4. Ab initio techniques are used to estimate the Heisenberg constant J. For clusters with two magnetic centers, the values obtained are about the same for models having more magnetic centers. The absence of collective effects in J strongly suggests that magnetic interactions in this kind of ionic solids are genuinely local and entangle only the two magnetic centers involved.
Resumo:
Isoscalar collective modes in a relativistic meson-nucleon system are investigated in the framework of the time-dependent Thomas-Fermi method. The energies of the collective modes are determined by solving consistently the dispersion relations and the boundary conditions. The energy weighted sum rule satisfied by the models considered allows the identification of the giant resonances. The percentage of the energy weighted sum rule exhausted by the collective modes is in agreement with experimental data, but the agreement with the energy of the modes depends on the model considered.