8 resultados para CORRELATION SPECTROSCOPY
em Diposit Digital de la UB - Universidade de Barcelona
Resumo:
Màster en Nanociència i Nanotecnologia curs 2006-2007. Directors: Francesca Peiró i Martínez and Jordi Arbiol i Cobos
Resumo:
We have employed time-dependent local-spin-density theory to analyze the far-infrared transmission spectrum of InAs self-assembled nanoscopic rings recently reported [A. Lorke et al., Phys. Rev. Lett. (to be published)]. The overall agreement between theory and experiment is fairly good, which on the one hand confirms that the experimental peaks indeed reflect the ringlike structure of the sample, and on the other hand, asseses the suitability of the theoretical method to describe such nanostructures. The addition energies of one- and two-electron rings are also reported and compared with the corresponding capacitance spectra
Resumo:
Within the noncollinear local spin-density approximation, we have studied the ground state structure of a parabolically confined quantum wire submitted to an in-plane magnetic field, including both Rashba and Dresselhaus spin-orbit interactions. We have explored a wide range of linear electronic densities in the weak (strong) coupling regimes that appear when the ratio of spin-orbit to confining energy is small (large). These results are used to obtain the conductance of the wire. In the strong coupling limit, the interplay between the applied magnetic field¿irrespective of the in-plane direction, the exchange-correlation energy, and the spin-orbit energy-produces anomalous plateaus in the conductance vs linear density plots that are otherwise absent, or washes out plateaus that appear when the exchange-correlation energy is not taken into account.
Resumo:
High-sensitivity electron paramagnetic resonance experiments have been carried out in fresh and stressed Mn12 acetate single crystals for frequencies ranging from 40 GHz up to 110 GHz. The high number of crystal dislocations formed in the stressing process introduces a E(Sx2-Sy2) transverse anisotropy term in the spin Hamiltonian. From the behavior of the resonant absorptions on the applied transverse magnetic field we have obtained an average value for E=22 mK, corresponding to a concentration of dislocations per unit cell of c=10-3.
Resumo:
We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of interactions.
Resumo:
The performance of different correlation functionals has been tested for alkali metals, Li to Cs, interacting with cluster models simulating different active sites of the Si(111) surface. In all cases, the ab initio Hartree-Fock density has been obtained and used as a starting point. The electronic correlation energy is then introduced as an a posteriori correction to the Hartree-Fock energy using different correlation functionals. By making use of the ionic nature of the interaction and of different dissociation limits we have been able to prove that all functionals tested introduce the right correlation energy, although to a different extent. Hence, correlation functionals appear as an effective and easy way to introduce electronic correlation in the ab initio Hartree-Fock description of the chemisorption bond in complex systems where conventional configuration interaction techniques cannot be used. However, the calculated energies may differ by some tens of eV. Therefore, these methods can be employed to get a qualitative idea of how important correlation effects are, but they have some limitations if accurate binding energies are to be obtained.