5 resultados para C. Computational simulation

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An Ising-like model, with interactions ranging up to next-nearest-neighbor pairs, is used to simulate the process of interface alloying. Interactions are chosen to stabilize an intermediate "antiferromagnetic" ordered structure. The dynamics proceeds exclusively by atom-vacancy exchanges. In order to characterize the process, the time evolution of the width of the intermediate ordered region and the diffusion length is studied. Both lengths are found to follow a power-law evolution with exponents depending on the characteristic features of the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ic first-order transition line ending in a critical point. This critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks in the specific heat, not always associated with a true phase transition. The main conclusion is that premartensitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong enough to freeze the involved mode phonon. The implication of the results in relation to the available experimental data is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we show that the orthorhombic phase of FeSi2 (stable at room temperature) displays a sizable anisotropy in the infrared spectra, with minor effects in the Raman data too. This fact is not trivial at all, since the crystal structure corresponds to a moderate distortion of the fluorite symmetry. Our analysis is carried out on small single crystals grown by flux transport, through polarization-resolved far-infrared reflectivity and Raman measurements. Their interpretation has been obtained by means of the simulated spectra with tight-binding molecular dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.