5 resultados para ASYMMETRIC ALTERNATING COPOLYMERIZATION

em Diposit Digital de la UB - Universidade de Barcelona


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Monte Carlo simulation study of the vacancy-assisted domain growth in asymmetric binary alloys is presented. The system is modeled using a three-state ABV Hamiltonian which includes an asymmetry term. Our simulated system is a stoichiometric two-dimensional binary alloy with a single vacancy which evolves according to the vacancy-atom exchange mechanism. We obtain that, compared to the symmetric case, the ordering process slows down dramatically. Concerning the asymptotic behavior it is algebraic and characterized by the Allen-Cahn growth exponent x51/2. The late stages of the evolution are preceded by a transient regime strongly affected by both the temperature and the degree of asymmetry of the alloy. The results are discussed and compared to those obtained for the symmetric case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have observed a type of giant magnetoresistance (GMR) in magnetic granular Co10Cu90 alloys. The asymmetric GMR depends strongly on the size of magnetic Co particles, which exhibit superparamagnetic behavior at given measured temperature. The asymmetric GMR points to a metastable state that develops when the sample is field-cooled, which is lost after recycling. We propose that high-field cooling produces more effective parallel alignment of small unblocked Co particle moments and interfacial magnetizations, which contributes to the further decrease of the resistance in comparison with the samples zero-field-cooled, and then applied to the same field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the static properties of the Little model with asymmetric couplings. We show that the thermodynamics of this model coincides with that of the Sherrington-Kirkpatrick model, and we compute the main finite-size corrections to the difference of the free energy between these two models and to some clarifying order parameters. Our results agree with numerical simulations. Numerical results are presented for the symmetric Little model, which show that the same conclusions are also valid in this case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk and single-particle properties of hot hyperonic matter are studied within the Brueckner-Hartree-Fock approximation extended to finite temperature. The bare interaction in the nucleon sector is the Argonne V18 potential supplemented with an effective three-body force to reproduce the saturating properties of nuclear matter. The modern Nijmegen NSC97e potential is employed for the hyperon-nucleon and hyperon-hyperon interactions. The effect of temperature on the in-medium effective interaction is found to be, in general, very small and the single-particle potentials differ by at most 25% for temperatures in the range from 0 to 60 MeV. The bulk properties of infinite matter of baryons, either nuclear isospin symmetric or a Beta-stable composition that includes a nonzero fraction of hyperons, are obtained. It is found that the presence of hyperons can modify the thermodynamical properties of the system in a non-negligible way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron and proton single-particle spectral functions in asymmetric nuclear matter fulfill energy-weighted sum rules. The validity of these sum rules within the self-consistent Green's function approach is investigated. The various contributions to these sum rules and their convergence as a function of energy provide information about correlations induced by the realistic interaction between the nucleons. The study of the sum rules in asymmetric nuclear matter exhibits the isospin dependence of the nucleon-nucleon correlations.