116 resultados para 12-P-0708-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate chaotic, memory, and cooling rate effects in the three-dimensional Edwards-Anderson model by doing thermoremanent (TRM) and ac susceptibility numerical experiments and making a detailed comparison with laboratory experiments on spin glasses. In contrast to the experiments, the Edwards-Anderson model does not show any trace of reinitialization processes in temperature change experiments (TRM or ac). A detailed comparison with ac relaxation experiments in the presence of dc magnetic field or coupling distribution perturbations reveals that the absence of chaotic effects in the Edwards-Anderson model is a consequence of the presence of strong cooling rate effects. We discuss possible solutions to this discrepancy, in particular the smallness of the time scales reached in numerical experiments, but we also question the validity of the Edwards-Anderson model to reproduce the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore the statistical properties of grain boundaries in the vortex polycrystalline phase of type-II superconductors. Treating grain boundaries as arrays of dislocations interacting through linear elasticity, we show that self-interaction of a deformed grain boundary is equivalent to a nonlocal long-range surface tension. This affects the pinning properties of grain boundaries, which are found to be less rough than isolated dislocations. The presence of grain boundaries has an important effect on the transport properties of type-II superconductors as we show by numerical simulations: our results indicate that the critical current is higher for a vortex polycrystal than for a regular vortex lattice. Finally, we discuss the possible role of grain boundaries in vortex lattice melting. Through a phenomenological theory we show that melting can be preceded by an intermediate polycrystalline phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structure of an isolated oxygen vacancy in SrTiO3 has been investigated with a variety of ab initio quantum mechanical approaches. In particular we compared pure density functional theory (DFT) approaches with the Hartree-Fock method, and with hybrid methods where the exchange term is treated in a mixed way. Both local cluster models and periodic calculations with large supercells containing up to 80 atoms have been performed. Both diamagnetic (singlet state) and paramagnetic (triplet state) solutions have been considered. We found that the formation of an O vacancy is accompanied by the transfer of two electrons to the 3d(z2) orbitals of the two Ti atoms along the Ti-Vac-Ti axis. The two electrons are spin coupled and the ground state is diamagnetic. New states associated with the defect center appear in the gap just below the conduction band edge. The formation energy computed with respect to an isolated oxygen atom in the triplet state is 9.4 eV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The observation of coherent tunnelling in Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ was a crucial discovery in the realm of the Jahn-Teller (JT) effect. The main reasons favoring this dynamic behavior are now clarified through ab initio calculations on Cu2+ - and Ag2+ -doped cubic oxides. Small JT distortions and an unexpected low anharmonicity of the eg JT mode are behind energy barriers smaller than 25 cm-1 derived through CASPT2 calculations for Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ . The low anharmonicity is shown to come from a strong vibrational coupling of MO610- units (M=Cu,Ag) to the host lattice. The average distance between the d9 impurity and ligands is found to vary significantly on passing from MgO to SrO following to a good extent the lattice parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enhancement in the production of even-Z nuclei observed in nuclear fission has also been observed in fragments produced from heavy ion collsions. Beams of 40Ar, 40Cl, and 40Ca at 25 MeV/nucleon were impinged on 58Fe and 58Ni targets. The resulting fragments were detected using the MSU 4pi detector array, which had additional silicon detectors for better isotopic resolution. Comparison of the ratios of yields for each element showed enhancement of even-Z fragment production. The enhancement was more pronounced for reactions with a greater difference in the N/Z of the compound system. However, this effect was less for systems that were more neutron rich. The average N/Z for fragments also displayed an odd-even effect with a lower average N/Z for the even-Z fragments. This is related to the greater availability of neutron-poor isotopes for even-Z nuclei

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By using techniques of unitarized chiral perturbation theory, where the Lamda(1405) and Lamda(1670) resonances are dynamically generated, we evaluate the magnetic moments of these resonances and their transition magnetic moment. The results obtained here differ appreciably from those obtained with existing quark models. The width for the Lamda(1670)->Lamda(1405)gamma transition is also evaluated, leading to a branching ratio of the order of 210-6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Isotopic and isotonic chains of superheavy nuclei are analyzed to search for spherical double shell closures beyond Z=82 and N=126 within the new effective field theory model of Furnstahl, Serot, and Tang for the relativistic nuclear many-body problem. We take into account several indicators to identify the occurrence of possible shell closures, such as two-nucleon separation energies, two-nucleon shell gaps, average pairing gaps, and the shell correction energy. The effective Lagrangian model predicts N=172 and Z=120 and N=258 and Z=120 as spherical doubly magic superheavy nuclei, whereas N=184 and Z=114 show some magic character depending on the parameter set. The magicity of a particular neutron (proton) number in the analyzed mass region is found to depend on the number of protons (neutrons) present in the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extension of density functional theory (DFT) to include pairing correlations without formal violation of the particle-number conservation condition is described. This version of the theory can be considered as a foundation of the application of existing DFT plus pairing approaches to atoms, molecules, ultracooled and magnetically trapped atomic Fermi gases, and atomic nuclei where the number of particles is conserved exactly. The connection with Hartree-Fock-Bogoliubov (HFB) theory is discussed, and the method of quasilocal reduction of the nonlocal theory is also described. This quasilocal reduction allows equations of motion to be obtained which are much simpler for numerical solution than the equations corresponding to the nonlocal case. Our theory is applied to the study of some even Sn isotopes, and the results are compared with those obtained in the standard HFB theory and with the experimental ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Màster en Nanociència i Nanotecnologia