6 resultados para winter warming
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
"Cornstalk disease" is the name given to the cause or causes of death of cattle allowed to run in fields of standing cornstalks from which the ears have been gathered. It is probable that "many different maladies have been included under this name." In Nebraska, however, there is such a similarity in the symptoms reported by the farmers that it seems probable that the great majority of the losses attributed to cornstalk disease are really due to some common cause. As to the exact nature of this cause nothing is known. However, various theories have been advanced, and methods of prevention or treatment based upon these theories have been described.
Resumo:
This State of the Arctic Report presents a review of recent data by an international group of scientists who developed a consensus on the information content and reliability. The report highlights data primarily from 2000 to 2005 with a first look at winter 2006, providing an update to some of the records of physical processes discussed in the Arctic Climate Impact Assessment (ACIA, 2004, 2005). Of particular note: • Atmospheric climate patterns are shifting (Fig. 1). The late winter/spring pattern for 2000–2005 had new hot spots in northeast Canada and the East Siberian Sea relative to 1980–1999. Late winter 2006, however, shows a return to earlier climate patterns, with warm temperatures in the extended region near Svalbard. • Ocean salinity and temperature profiles at the North Pole and in the Beaufort Sea, which changed abruptly in the 1990s, show that conditions since 2000 have relaxed toward the pre-1990 climatology, although 2001–2004 has seen an increase in northward ocean heat transport through Bering Strait (Fig. 2), which is thought to impact sea ice loss. • Sea ice extent continues to decrease. The sea ice extent in September 2005 was the minimum observed in summer during the satellite era (beginning in 1979), marking an unprecedented series of extreme ice extent minima beginning in 2002 (Fig. 3). The sea ice extent in March 2006 was also the minimum observed in winter during the satellite era. • Tundra vegetation greenness increased, primarily due to an increase in the abundance of shrubs. Boreal forest vegetation greenness decreased, possibly due to drought conditions (Fig. 4). • There is increasing interest in the stability of the Greenland ice sheet. The velocity of outlet glaciers increased in 2005 relative to 2000 and 1995, but uncertainty remains with regard to the total mass balance. • Permafrost temperatures continue to increase. However, data on changes in the active layer thickness (the relatively thin layer of ground between the surface and permafrost that undergoes seasonal freezing and thawing) are less conclusive. While some of the sites show a barely noticeable increasing trend in the thickness of the active layer, most of them do not. • Globally, 2005 was the warmest year in the instrumental record (beginning in 1880), with the Arctic providing a large contribution toward this increase. Many of the trends documented in the ACIA are continuing, but some are not. Taken collectively, the observations presented in this report indicate that during 2000–2005 the Arctic system showed signs of continued warming. However, there are a few indications that certain elements may be recovering and returning to recent climatological norms (for example, the central Arctic Ocean and some wind patterns). These mixed tendencies further illustrate the sensitivity and complexity of the Arctic physical system. They underline the importance of maintaining and expanding efforts to observe and better understand this important component of the climate system to provide accurate predictions of its future state.
Resumo:
There is compelling evidence that Planet Earth is on the path to an era of global warming that has serious implications for the well-being of both people and nature. This three-volume synthesis of literature will be a marvelous place for both the public and new scholars interested in global warming to begin their pursuit of the subject. The author captures the best of the scientific literature and press materials appearing in recent years. The utility of these volumes as a resource for gaining a broad background or pursuing a particular aspect of global warming is enhanced by Johansen's talent for explaining with clarity a vast and rapidly growing subject.
Resumo:
In response to the increasing global demand for energy, oil exploration and development are expanding into frontier areas of the Arctic, where slow-growing tundra vegetation and the underlying permafrost soils are very sensitive to disturbance. The creation of vehicle trails on the tundra from seismic exploration for oil has accelerated in the past decade, and the cumulative impact represents a geographic footprint that covers a greater extent of Alaska’s North Slope tundra than all other direct human impacts combined. Seismic exploration for oil and gas was conducted on the coastal plain of the Arctic National Wildlife Refuge, Alaska, USA, in the winters of 1984 and 1985. This study documents recovery of vegetation and permafrost soils over a two-decade period after vehicle traffic on snow-covered tundra. Paired permanent vegetation plots (disturbed vs. reference) were monitored six times from 1984 to 2002. Data were collected on percent vegetative cover by plant species and on soil and ground ice characteristics. We developed Bayesian hierarchical models, with temporally and spatially autocorrelated errors, to analyze the effects of vegetation type and initial disturbance levels on recovery patterns of the different plant growth forms as well as soil thaw depth. Plant community composition was altered on the trails by species-specific responses to initial disturbance and subsequent changes in substrate. Long-term changes included increased cover of graminoids and decreased cover of evergreen shrubs and mosses. Trails with low levels of initial disturbance usually improved well over time, whereas those with medium to high levels of initial disturbance recovered slowly. Trails on ice-poor, gravel substrates of riparian areas recovered better than those on ice-rich loamy soils of the uplands, even after severe initial damage. Recovery to pre-disturbance communities was not possible where trail subsidence occurred due to thawing of ground ice. Previous studies of disturbance from winter seismic vehicles in the Arctic predicted short-term and mostly aesthetic impacts, but we found that severe impacts to tundra vegetation persisted for two decades after disturbance under some conditions. We recommend management approaches that should be used to prevent persistent tundra damage.
Resumo:
To better understand agronomic and end-use quality in wheat (Triticum aestivum L.) we developed a population containing 154 F6:8 recombinant inbred lines (RILs) from the cross TAM107-R7/Arlin. The parental lines and RILs were phenotyped at six environments in Nebraska and differed for resistance to Wheat soilborne mosaic virus (WSBMV), morphological, agronomic, and end-use quality traits. Additionally, a 2300 cM genome-wide linkage map was created for quantitative trait loci (QTL) analysis. Based on our results across multiple environments, the best RILs could be used for cultivar improvement. The population and marker data are publicly available for interested researchers for future research. The population was used to determine the effect of WSBMV on agronomic and end-use quality and for the mapping of a resistance locus. Results from two infected environments showed that all but two agronomic traits were significantly affected by the disease. Specifically, the disease reduced grain yield by 30% of susceptible RILs and they flowered 5 d later and were 11 cm shorter. End-use quality traits were not negatively affected but flour protein content was increased in susceptible RILs. The resistance locus SbmTmr1 mapped to 27.1 cM near marker wPt-5870 on chromosome 5DL using ELISA data. Finally, we investigated how WSBMV affected QTL detection in the population. QTLs were mapped at two WSBMV infected environments, four uninfected environments, and in the resistant and susceptible RIL subpopulations in the infected environments. Fifty-two significant (LOD≥3) QTLs were mapped in RILs at uninfected environments. Many of the QTLs were pleiotropic or closely linked at 6 chromosomal regions. Forty-seven QTLs were mapped in RILs at WSBMV infected environments. Comparisons between uninfected and infected environments identified 20 common QTLs and 21 environmentally specific QTLs. Finally, 24 QTLs were determined to be affected by WSBMV by comparing the subpopulations in QTL analyses within the same environment. The comparisons were statistically validated using marker by disease interactions. These results showed that QTLs can be affected by WSBMV and careful interpretation of QTL results is needed where biotic stresses are present. Finally, beneficial QTLs not affected by WSBMV or the environment are candidates for marker-assisted selection.
Resumo:
Every fall millions of blackbirds come down the Mississippi Flyway to return to their winter roosts in Arkansas, Louisiana, and East Texas. When these roosts are located in urban areas, public pressure makes the more common chemical means of control impractical. A less destructive and more permanent method of control was sought. At Rice University, in Houston, Texas, there has been a blackbird roost of various sizes and durations since 1956. For the past two years we have had the opportunity both to study roosting blackbird biology and experiment with habitat alteration as a control method. This particular report concentrates on the results and interpretation of the tree- trimming program initiated in August 1974. The birds involved are primarily Brown-headed Cowbirds (Molothrus ater), along with Starlings (sturnus vulgaris), Common and Great-tailed Grackles (Quiscalus quiscula and Cassidix mexicanus), Red-winged Blackbirds (Agelaius phoenicus) and Robins (Turdus migratorius). The campus comprises 121 ha and was planted with live oaks (Quercus virginiana) in 1912. These trees retain their foliage throughout the winter and now form a closed canopy over some 5-6 ha. In the 60s and early 70s most of the birds that came to Houston for the winter roosted in a 64-ha woodlot 10 km north of campus. In January 1970, the U.S. Fish and Wildlife Roosting Survey reported one million birds at this site we call the North Loop. Fifteen- thousand birds were estimated at Rice.