2 resultados para wet season

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flight periodicity of western balsam bark beetle (Dryocoetes confusus Swaine) in Big Cottonwood Canyon, Utah, was studied during the summer months of 1992, 1993, and 1994. Contents of baited funnel traps were tallied by species up to 3 times weekly. Two main periods of flight activity were observed each year. The first and, generally, largest occurred in early summer soon after flight was initiated for the season. A 2nd period was observed in late summer, generally August. Timing of the 2 periods was influenced by unusually warm or cool weather in each study year. The 1st period had more males than females while the 2nd period had a majority of females. Except during periods of cool or wet weather, western balsam bark beetles were found to be active at least at minimal levels from June through September.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is designed to compare the monthly continental snow cover and sea ice extent loss in the Arctic with regional atmospheric conditions including: mean sea level pressure, 925 hPa air temperature, and mean wind direction among others during the melt season (March-August) over the 29-year study period 1979-2007. Little research has gone into studying the concurrent variations in the annual loss of continental snow cover and sea ice extent across the land-ocean boundary, since these data are largely stored in incompatible formats. However, the analysis of these data, averaged spatially over three autonomous study regions located in Siberia, North America, and Western Russia, reveals a distinct difference in the response of snow and sea ice to the atmospheric forcing. On average, sea ice extent is lost earlier in the year, in May, than snow cover, in June, although Arctic sea ice is located farther north than continental snow in all three study regions. Once the loss of snow and ice extent begins, snow cover is completely removed sooner than sea ice extent, even though ice loss begins earlier in the melt season. Further, the analysis of the atmospheric conditions surrounding loss of snow and ice cover over the independent study regions indicates that conditions of cool temperatures with strong northeasterly winds in the later melt season months are effective at removing sea ice cover, likely through ice divergence, as are warmer temperatures via southerly winds directly forcing melt. The results of this study set the framework for further analysis of the direct influence of snow cover loss on later melt season sea ice extents and the predictability of snow and sea ice extent responses to modeled future climate conditions