7 resultados para upper miocene
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The October 1998 flood on the upper Guadalupe River system was produced by a 24-hour precipitation amount of 483 mm at one station, over 380 mm at several other stations, and up to 590 mm over five days, precipitation amounts greater than the 100-year storm as prescribed in Weather Bureau Technical Papers 40 (1961) and 49 (1964). This study uses slope-area discharge estimates and published discharge and precipitation data to analyze flow characteristics of the three major branches of the Guadalupe River on the Edwards Plateau. The main channel of the Guadalupe has a single large flood-control structure at Canyon Dam and five flood dams on the tributary Comal River. On the upper San Marcos River there are five detention dams that regulate 80% of its drainage. The Blanco River, which has no structural controls, generated a peak discharge of 2,970 m3/s from a 1,067 km2 basin. Downstream of Canyon Dam, the Guadalupe River generated a peak discharge greater than 3,000 m3/s from an area of 223 km2. The event exceeded the capacity of both the Comal River and San Marcos flood-control projects and produced spills that inundated areas greater than the 100-year floodplain defined by the Federal Emergency Management Agency.
Resumo:
Fresh-water diatoms are present in coal, and tonsteins (altered volcanic ash) are interbedded with the coal, in the Miocene Venado Formation on the southwest margin of the Limon Basin, in Provincia Alajuela, northern Costa Rica. The Venado Formation is composed of more than 300 m of mudstone, siltstone, sandstone, limestone, volcaniclastics, and coal beds. The coal beds are of unknown lateral extent and mainly occur in the middle part of the formation. The Pataste coal bed occurs near the middle of the formation and is divided into three parts by two tonstein layers. The abundance of biogenic opaline material (diatoms) in the coal is believed to be a direct response to an influx of silica from volcanic tuffs that Later altered to the tonsteins. Diatoms are a useful microscopic tool for identifying the depositional environments of the Pataste coal deposit. The diatoms identified include Aulacosira ambigua, Pinnularia sp., Eunotia spp., and Achnanthes exigua, among others. The abundance of Aulacosira arnbigua suggests that an open-water lacustrine environment was present locally. Achnanthes exigua and the remaining diatom species are benthic forms that lived in shallow fresh-water to slightly acidic swamp environments. The different types of diatoms found in the coal indicate that swamp environments were intermixed with lacustrine environments during the formation of the peat deposit or that the coal records environmental changes through time.
Resumo:
Three new centric diatom species assigned to a new genus are described from Miocene lacustrine deposits of Idaho. Species of the new genus, Mesodictyon, have the areola cribrum in the middle of the loculus, strutted processes and radiating, non-fasciculated striae. The strutted processes of M. magnum (diameter 60-150 μm) have long (2-3 μm) tubular extensions. The strutted processes of M. fovis (diameter 14-80 μm) are in distinct pits near the junction of the face and mantle. The valve face of M. undulatum (diameter 10-44 μm) is weakly tangentially undulate. Preliminary evidence indicates that Mesodictyon has a wide geographic distribution and may be a useful biostratigraphic marker.
Resumo:
Modern southern California is fragmented by faults that juxtapose blocks with contrasting topographies and differing geologic histories. Many of the tectonic events that have shaped southern California were initiated during the Miocene, as subduction along the ancient trench margin off southern California was replaced by transform (strikeslip) faulting, such as that along the San Andreas fault.
Resumo:
A new diatom species, Thalassiosira praeoestrupii Dumont, Baldauf and Barron, is described. The first occurrence of T. praeoestrupii in coastal California diatom-bearing outcrops occurs between the last occurrence of Rouxia californica at 6.0 Ma, and the first occurrence of Thalassiosira oestrupii at 5.1 Ma. The latter two species have customarily been used to identify the Miocene/Pliocene boundary. Paleomagnetic studies at Santa Cruz, California, demonstrate that the first occurrence of T. praeoestrupii coincides with the top of magnetic polarity Chron 5, which closely approximates the Miocene/Pliocene Epoch boundary.
Resumo:
The paleoclimatic and paleoceanographic history of the Middle and Late Miocene marginal eastern North Pacific as been studied in a north-to-south transect encompassing DSDP Site 173, the Newport Beach surface section, and DSDP Site 470, based on quantitative diatom and planktic foraminiferal analyses. Fourteen cold and 12 warm events that show close agreement with other microfossil studies as well as oxygen isotope records from low-latitude Pacific sites have been identified. Hiatuses are recognized at 7 to 6.5 Ma. 9.8 to 8.5 Ma, and 12 to 11 Ma at the three reference localities, and they correspond to widely recognized deep-sea hiatuses in the World Ocean.
Resumo:
High-resolution seismic-reflection data collected along the length of the Caloosahatchee River in southwestern Florida have been correlated to nannofossil biostratigraphy and strontium-isotope chemostratigraphy at six continuously cored boreholes. These data are interpreted to show a major Late Miocene(?) to Early Pliocene fluvial– deltaic depositional system that prograded southward across the carbonate Florida Platform, interrupting nearly continuous carbonate deposition since early in the Cretaceous. Connection of the platform top to a continental source of siliciclastics and significant paleotopography combined to focus accumulation of an immense supply of siliciclastics on the southeastern part of the Florida Platform. The remarkably thick (> 100 m), sand-rich depositional system, which is characterized by clinoformal progradation, filled in deep accommodation, while antecedent paleotopography directed deltaic progradation southward within the middle of the present-day Florida Peninsula. The deltaic depositional system may have prograded about 200 km southward to the middle and upper Florida Keys, where Late Miocene to Pliocene siliciclastics form the foundation of the Quaternary carbonate shelf and shelf margin of the Florida Keys. These far-traveled siliciclastic deposits filled accommodation on the southeastern part of the Florida Platform so that paleobathymetry was sufficiently shallow to allow Quaternary recovery of carbonate sedimentation in the area of southern peninsular Florida and the Florida Keys.