4 resultados para underground traps
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
When the well "goes dry" or when the windmill or pump breaks down, every one in the household immediately appreciates the value fo plenty of water. In other words, "You never miss the water until the well runs dry." Fortunately, in most sections of this state, plenty of pure water may be obtained by sinking wells of moderate depth, yet surprisingly few farm homes are supplied with running water in the kitchen even though the barn yards are equipped with hydrants and tanks. It is the purpose of this bulletin to present a number of water supply and sewage disposal systems which have been used in Nebraska and surrounding states and which add greatly to the comfort and convenience of the farm home.
Resumo:
In this paper, a cross-layer solution for packet size optimization in wireless sensor networks (WSN) is introduced such that the effects of multi-hop routing, the broadcast nature of the physical wireless channel, and the effects of error control techniques are captured. A key result of this paper is that contrary to the conventional wireless networks, in wireless sensor networks, longer packets reduce the collision probability. Consequently, an optimization solution is formalized by using three different objective functions, i.e., packet throughput, energy consumption, and resource utilization. Furthermore, the effects of end-to-end latency and reliability constraints are investigated that may be required by a particular application. As a result, a generic, cross-layer optimization framework is developed to determine the optimal packet size in WSN. This framework is further extended to determine the optimal packet size in underwater and underground sensor networks. From this framework, the optimal packet sizes under various network parameters are determined.
Resumo:
In the United States the peak electrical use occurs during the summer. In addition, the building sector consumes a major portion of the annual electrical energy consumption. One of the main energy consuming components in the building sector is the Heating, Ventilation, and Air-Conditioning (HVAC) systems. This research studies the feasibility of implementing a solar driven underground cooling system that could contribute to reducing building cooling loads. The developed system consists of an Earth-to-Air Heat Exchanger (EAHE) coupled with a solar chimney that provides a natural cool draft to the test facility building at the Solar Energy Research Test Facility in Omaha, Nebraska. Two sets of tests have been conducted: a natural passively driven airflow test and a forced fan assisted airflow test. The resulting data of the tests has been analyzed to study the thermal performance of the implemented system. Results show that: The underground soil proved to be a good heat sink at a depth of 9.5ft, where its temperature fluctuates yearly in the range of (46.5°F-58.2°F). Furthermore, the coupled system during the natural airflow modes can provide good thermal comfort conditions that comply with ASHRAE standard 55-2004. It provided 0.63 tons of cooling, which almost covered the building design cooling load (0.8 tons, extreme condition). On the other hand, although the coupled system during the forced airflow mode could not comply with ASHRAE standard 55-2004, it provided 1.27 tons of cooling which is even more than the building load requirements. Moreover, the underground soil experienced thermal saturation during the forced airflow mode due to the oversized fan, which extracted much more airflow than the EAHE ability for heat dissipation and the underground soil for heat absorption. In conclusion, the coupled system proved to be a feasible cooling system, which could be further improved with a few design recommendations.
Resumo:
Seidel and Booth (1960) wrote that the "life histories of the genus Microtus are not numerous in the literature." In support of his observation he cited 6 publications, all dated between 1891 and 1953. Since then the literature has exploded with a proliferation of publications. An international literature review recently revealed over 3,500 citations for the genus. When Pitymys and Clethrionomys are included another 350 and 1,880, respectively, were found. Over the last 10 years approximately 3 new publications on voles appeared every 4 days; a significant output for what some would consider such an insignificant species. Most of the publications were the result of graduate research projects on population dynamics and species ecology. As such, many do not explore more than the rudimentary ecological relationships between the animal and their environments. Unfortunate, as well, is that all but one confined their observations to only a small part of their total environment. For many of these animals, their life underground may be more important for their survival than that above ground. Trapping studies conducted by Godfrey and Askham (1988) with permanently placed pitfall live traps in orchards revealed a significant inverse population fluctuation during the year. During the winter, when populations are expected to decrease, as many as 6 to 8 mature Microtus montanus were collected at any 1 time in the traps after several centimeters of snow accumulation. During the summer, when populations are expected to increase, virtually no animals were collected in the traps. According to current population dynamics theory, greater numbers of animals, including increasingly larger numbers of immature members of the community, should appear in any sample between the onset of the breeding period, generally in the spring, taper off during the latter part of the production season, usually late summer, and then decline as the limiting factors begin to take effect. For us, we trapped more animals in the fall and early winter than we did during the spring and summer. A review of the above literature did little to answer our question. Where are the animals going during the summer and why?