3 resultados para tungsten carbide coating

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PREPARATION OF COATED MICROTOOLS FOR ELECTROCHEMICAL MACHINING APPLICATIONS Ajaya K. Swain, M.S. University of Nebraska, 2010 Advisor: K.P. Rajurkar Coated tools have improved the performance of both traditional and nontraditional machining processes and have resulted in higher material removal, better surface finish, and increased wear resistance. However, a study on the performance of coated tools in micromachining has not yet been adequately conducted. One possible reason is the difficulties associated with the preparation of coated microtools. Besides the technical requirement, economic and environmental aspects of the material and the coating technique used also play a significant role in coating microtools. This, in fact, restricts the range of coating materials and the type of coating process. Handling is another major issue in case of microtools purely because of their miniature size. This research focuses on the preparation of coated microtools for pulse electrochemical machining by electrodeposition. The motivation of this research is derived from the fact that although there were reports of improved machining by using insulating coatings on ECM tools, particularly in ECM drilling operations, not much literature was found relating to use of metallic coating materials in other ECM process types. An ideal ECM tool should be good thermal and electrical conductor, corrosion resistant, electrochemically stable, and stiff enough to withstand electrolyte pressure. Tungsten has almost all the properties desired in an ECM tool material except being electrochemically unstable. Tungsten can be oxidized during machining resulting in poor machining quality. Electrochemical stability of a tungsten ECM tool can be improved by electroplating it with nickel which has superior electrochemical resistance. Moreover, a tungsten tool can be coated in situ reducing the tool handling and breakage frequency. The tungsten microtool was electroplated with nickel with direct and pulse current. The effect of the various input parameters on the coating characteristics was studied and performance of the coated microtool was evaluated in pulse ECM. The coated tool removed more material (about 28%) than the uncoated tool under similar conditions and was more electrochemical stable. It was concluded that nickel coated tungsten microtool can improve the pulse ECM performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon carbide (SiC) is considered a suitable candidate for high-power, high-frequency devices due to its wide bandgap, high breakdown field, and high electron mobility. It also has the unique ability to synthesize graphene on its surface by subliming Si during an annealing stage. The deposition of SiC is most often carried out using chemical vapor deposition (CVD) techniques, but little research has been explored with respect to the sputtering of SiC. Investigations of the thin film depositions of SiC from pulse sputtering a hollow cathode SiC target are presented. Although there are many different polytypes of SiC, techniques are discussed that were used to identify the film polytype on both 4H-SiC substrates and Si substrates. Results are presented about the ability to incorporate Ge into the growing SiC films for the purpose of creating a possible heterojunction device with pure SiC. Efforts to synthesize graphene on these films are introduced and reasons for the inability to create it are discussed. Analysis mainly includes crystallographic and morphological studies about the deposited films and their quality using x-ray diffraction (XRD), reflection high energy electron diffraction (RHEED), transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), Auger electron spectroscopy (AES) and Raman spectroscopy. Optical and electrical properties are also discussed via ellipsometric modeling and resistivity measurements. The general interpretation of these analytical experiments indicates that the films are not single crystal. However, the majority of the films, which proved to be the 3C-SiC polytype, were grown in a highly ordered and highly textured manner on both (111) and (110) Si substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable angle of incidence spectroscopic ellipsometry was used to determine the optical constants near the band edge of boron carbide (B5C) thin films deposited on glass and n-type Si(111) via plasma-enhanced chemical-vapor deposition. The index of refraction n, the extinction coefficient k, and the absorption coefficient are reported in the photon energy spectrum between 1.24 and 4 eV. Ellipsometry analysis of B5C films on silicon indicates a graded material, while the optical constants of B5C on glass are homogeneous. Line shape analyses of absorption data for the films on glass indicate an indirect transition at approximately 0.75 eV and a direct transition at about 1.5 eV. ©1996 American Institute of Physics.