2 resultados para translational energy distribution

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Central-place foragers that must return to a breeding site to deliver food to offspring are faced with trade-offs between prey patch quality and distance from the colony. Among colonial animals, pinnipeds and seabirds may have different provisioning strategies, due to differences in their ability to travel and store energy. We compared the foraging areas of lactating Antarctic fur seals and chinstrap penguins breeding at Seal Island, Antarctica, to investigate whether they responded differently to the distribution of their prey (Antarctic krill and myctophid fish) and spatial heterogeneity in their habitat. Dense krill concentrations occurred in the shelf region near the colony. However, only brooding penguins, which are expected to be time-minimizers because they must return frequently with whole food for their chicks, foraged mainly in this proximal shelf region. Lactating fur seals and incubating penguins, which can make longer trips to increase energy gain per trip, and so are expected to be energy-maximizers, foraged in the more distant (>20 km from the island) slope and oceanic regions. The shelf region was characterized by more abundant, but lower-energy-content immature krill, whereas the slope and oceanic regions had less abundant but higher-energy-content gravid krill, as well as high-energy-content myctophids. Furthermore, krill in the shelf region undertook diurnal vertical migration, whereas those in the slope and oceanic regions stayed near the surface throughout the day, which may enhance the capture rate for visual predators. Therefore, we sug- gest that the energy-maximizers foraged in distant, but potentially more profitable feeding regions, while the time-minimizers foraged in closer, but potentially less profitable regions. Thus, time and energy constraints derived from different provisioning strategies may result in sympatric colonial predator species using different foraging areas, and as a result, some central-place foragers use sub- optimal foraging habitats, in terms of the quality or quantity of available prey.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The purpose of this research was to study the sex distribution and energy allocation of dioecious Eastern Red Cedars (Juniperus virginiana) along an environmental resource gradient. The trees surveyed were growing in a canyon located at the University of Nebraska’s Cedar Point Biological Research Station in Ogallala, Nebraska. Due to the geography of this canyon, environmental factors necessary for plant growth should vary depending on the tree’s location within the canyon. These factors include water availability, sun exposure, ground slope, and soil nitrogen content, all of which are necessary for carbon acquisition. Juniperus virginiana is a dioecious conifer. Dioecious plants maintain male and female reproductive structures on separate individuals. Therefore, proximal spatial location is essential for pollination and successful reproduction. Typically female reproductive structures are more costly and require a greater investment of carbon and nitrogen. For this reason, growth, survival and successful reproduction are more likely to be limited by environmental resources for females than for male individuals. If this is true for Juniperus virginiana, females should be located in more nutrient and water rich areas than males. This also assumes that females can not be reproductively successful in areas of poor environmental quality. Therefore, reproductive males should be more likely to inhabit environments with relatively lower resource availability than females. Whether the environment affects sexual determination or just limits survival of different sexes is still relatively unknown. In order to view distribution trends along the environmental gradient, the position of the tree in the canyon transect was compared to its sex. Any trend in sex should correspond with varying environmental factors in the canyon, ie: sunlight availability, aspect, and ground slope. The individuals’ allocation to growth and reproduction was quantified first by comparing trunk diameter at six inches above ground to sex and location of the tree. The feature of energy allocation was further substantiated by comparing carbon and nitrogen content in tree leaf tissue and soil to location and sex of each individual. Carbon and nitrogen in soil indicate essential nutrient availability to the individual, while C and N in leaf tissue indicate nutrient limitation experienced by the tree. At the conclusion of this experiment, there is modest support that survival and fecundity of females demands environments relatively richer in nutrients, than needed by males to survive and be reproductively active. Side of the canyon appeared to have an influence on diameter of trees, frequency of sex and carbon and nitrogen leaf content. While this information indicated possible trends in the relation of sex to nutrient availability, most of the environmental variables presumed responsible for the sex distribution bias differed minutely and may not have been biologically significant to tree growth.