4 resultados para temporal and spatial pattern

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The wetlands of south-central Nebraska’s Rainwater Basin region are considered of international importance as a habitat for millions of migratory birds, but are being endangered by agricultural practices. The Rainwater Basin extends across 17 counties and covers 4,000 square miles. The purpose of this study was to assemble baseline chemical data for several representative wetlands across the Rainwater Basin region, and determine the use of these chemical data for investigating groundwater recharge. Eight representative wetlands were chosen across the Rainwater Basin to monitor surface and groundwater chemistry. At each site, a shallow well and deep well were installed and sampled once in the summer of 2009 and again in the spring of 2010. Wetland surface water was sampled monthly from April, 2009 to May, 2010. Waters were analyzed for major ions, nutrients, pesticides and oxygen-18 and deuterium isotopes at the University of Nebraska Water Sciences Laboratory. Geochemical analysis of surface waters presents a range of temporal and spatial variations. Wetlands had variable water volumes, isotopic compositions, ion chemistries and agricultural contaminant levels throughout the year and, except for a few trends, theses variations cannot be predicted with certainty year-to-year or wetland-to-wetland. Isotopic compositions showed evaporation was a contributor to water loss, and thus, did impact water chemistry. Surface water nitrate concentrations ranged from <0.10 to 4.04 mg/L. The nitrate levels are much higher in the groundwater, ranging from <0.10 to 18.4 mg/L, and are of concern because they are found above the maximum contaminant level (MCL) of 10 mg/L. Atrazine concentrations in surface waters ranged from <0.05 to 10.3 ppb. Groundwater atrazine concentrations ranged from <0.05 to 0.28 ppb. The high atrazine concentrations in surface waters are of concern as they are above the MCL of 3 ppb, and the highest levels occur during the spring bird migration. Most sampled groundwaters had detectable tritium indicating a mix of modern (<5 to 10 years old) and submodern (older than 1950s) recharge. The groundwater also had differences in chemical and isotope composition, and in some cases, increased nitrate concentrations, between the two sampling periods. Modern groundwater tritium ages and changes in groundwater chemical and isotopic compositions may indicate connections with surface waters in the Rainwater Basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Responding to a U.S. Federal court order to improve discharged wastewater quality, Augusta, Georgia initiated development of artificial wetlands in 1997 to treat effluents. Because of the proximity to Augusta Regional Airport at Bush Field, the U.S. Federal Aviation Administration expressed concern for potential increased hazard to aircraft posed by birds attracted to these wetlands. We commenced weekly low-level aerial surveys of habitats in the area beginning January, 1998. Over a one-year period, 49 surveys identified approximately 42,000 birds representing 52 species, including protected Wood Storks and Bald Eagles, using wetlands within 8 km of the airport. More birds were observed during the mid-winter and fall/spring migratory seasons (1,048 birds/survey; October - April) than during the breeding/post-breeding seasons (394 birds/survey; May - September). In winter, waterfowl dominated the avian assemblage (65% of all birds). During summer, wading birds were most abundant (56% of all birds). Habitat changes within the artificial wetlands produced fish kills and exposed mudflats, resulting in increased use by wading birds and shorebirds. No aquatic birds were implicated in 1998 bird strikes, and most birds involved could safely be placed within songbird categories. Airport incident reports further implicated songbirds. These findings suggested that efforts to decrease numbers of songbirds on the airport property must be included in the development of a wildlife hazard management plan. Seasonal differences in site use among species groups should also be considered in any such plan. Other wetlands within 8 km of the airport supported as many or more birds than the artificial wetlands. With proper management of the artificial wetlands, it should be possible to successfully displace waterfowl and wading birds to other wetlands further from the airport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selection of the appropriate management unit is critical to the conservation of animal populations. Defining such units depends upon knowledge of population structure and upon the timescale being considered. Here, we examine the trajectory of eleven subpopulations of five species of baleen whales to investigate temporal and spatial scales in management. These subpopulations were all extirpated by commercial whaling, and no recovery or repopulation has occurred since. In these cases, time elapsed since commercial extinction ranges from four decades to almost four centuries. We propose that these subpopulations did not recover either because cultural memory of the habitat has been lost, because widespread whaling among adjacent stocks eliminated these as sources for repopulation, and/or because segregation following exploitation produced the abandonment of certain areas. Spatial scales associated with the extirpated subpopulations are frequently smaller than those typically employed in management. Overall, the evidence indicates that: (1) the time frame for management should be at most decadal in scope (i.e., <100 yr) and based on both genetic and nongenetic evidence of population substructure, and (2) at least some stocks should be defined on a smaller spatial scale than they currently are.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emerging Cyber-Physical Systems (CPSs) are envisioned to integrate computation, communication and control with the physical world. Therefore, CPS requires close interactions between the cyber and physical worlds both in time and space. These interactions are usually governed by events, which occur in the physical world and should autonomously be reflected in the cyber-world, and actions, which are taken by the CPS as a result of detection of events and certain decision mechanisms. Both event detection and action decision operations should be performed accurately and timely to guarantee temporal and spatial correctness. This calls for a flexible architecture and task representation framework to analyze CP operations. In this paper, we explore the temporal and spatial properties of events, define a novel CPS architecture, and develop a layered spatiotemporal event model for CPS. The event is represented as a function of attribute-based, temporal, and spatial event conditions. Moreover, logical operators are used to combine different types of event conditions to capture composite events. To the best of our knowledge, this is the first event model that captures the heterogeneous characteristics of CPS for formal temporal and spatial analysis.