3 resultados para teaching in information technology

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using theoretical applications, the authors present an overview of theories that highlight approaches for teaching culturally sensitive content, personal experiences as educator and colleague in a predominantly white college campus and strategies for addressing culturally insensitive experiences in and outside the classroom. Presenters focus on the recruitment and retention of people of color and stress the need for today's predominantly white institutions to become more knowledgeable, tolerant and sensitive about their environments in an effort to make them more accepting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Women of color from any culture or country face additional barriers in predominantly white institutions. This panel presents perspectives and experiences of three women from three cultures and three different levels of academia—a Chicana Latino visiting professor, a graduate teaching assistant from India, and a Sudanese graduate research assistant.”

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with highspeed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.