2 resultados para subdivision

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of a collection of cestodes assigned to the genus Diplogonoporus Lönnberg, 1892 disclosed but two species, D. balaenopterae Lönnberg, 1892, and D. tetrapterus (von Siebold, 1848) (provis.). These cestodes occur characteristically in marine mammals but occasionally are found in terrestrial hosts; D. balaenopterae is recorded for the first time from the domestic dog, and it is concluded that D. grandis (Blanchard, 1894), from man, is conspecific with D. balaenopterae. The latter species is recorded for the first time from the humpback whale, Megaptera novaeangliae (Borowski). The relatively small D. tetrapterus, a common parasite of the Steller sea lion, Eumetopias jubata (Schreber), is reported for the first time from the sea otter, Enhydra lutris Linnaeus, and from the domestic mink, Mustela vison Schreber. Descriptions of representative specimens are presented, and the taxonomic status of other species assigned to Diplogonoporus is discussed. Although the diplogonadic organization of these cestodes is somewhat variable, it is nevertheless constant and serves to characterize the genus Diplogonoporus. The process of asexual reproduction by means of transverse subdivision of primary segments is described. This ability and the diplogonadic structure of these cestodes are considered to be adaptations that increase the production of eggs and thereby the probability of reproductive success in the marine habitat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.