9 resultados para spread of hatch
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In 1975, a wild white-tailed deer infected with bovine tuberculosis was shot in the northeastern Lower Peninsula, Michigan. The shooting of a second infected deer in the same area in 1994 triggered ongoing disease surveillance in the region. By 2002, bovine tuberculosis had been confirmed in 12 Michigan counties: from 449 deer; two elk; 41 non-cervid wildlife; one captive cervid facility and 28 cattle herds. We analyzed geographic spread of disease since the surveillance began and investigated factors influencing the prevalence of disease within the infected area. These analyses reveal that 78 percent of tuberculous deer came from within a 1560 km2 'core' area, within which the prevalence of apparent disease averaged 2.5 percent. Prevalence declined dramatically outside of the core and was an order of magnitude lower 30 km from its boundary. This prevalence gradient was highly significant (P<0.0001) and did not alter over the 6 year surveillance period (P= 0.98). Within the core, deer density and supplemental feeding by hunters were positively and independently correlated with tuberculosis prevalence in deer. Together, these two factors explained 55 percent of the variation in prevalence. We conclude that bovine tuberculosis was already well established in the deer population in 1994, that the infected area has not expanded significantly since that time, and that deer over-abundance and food supplementation have both contributed to ongoing transmission of disease. Managers are currently enforcing prohibitions on deer feeding in the core and are working to lower deer numbers there through increased hunting pressure.
Resumo:
Stage-structured models that integrate demography and dispersal can be used to identify points in the life cycle with large effects on rates of population spatial spread, information that is vital in the development of containment strategies for invasive species. Current challenges in the application of these tools include: (1) accounting for large uncertainty in model parameters, which may violate assumptions of ‘‘local’’ perturbation metrics such as sensitivities and elasticities, and (2) forecasting not only asymptotic rates of spatial spread, as is usually done, but also transient spatial dynamics in the early stages of invasion. We developed an invasion model for the Diaprepes root weevil (DRW; Diaprepes abbreviatus [Coleoptera: Curculionidae]), a generalist herbivore that has invaded citrus-growing regions of the United States. We synthesized data on DRW demography and dispersal and generated predictions for asymptotic and transient peak invasion speeds, accounting for parameter uncertainty. We quantified the contributions of each parameter toward invasion speed using a ‘‘global’’ perturbation analysis, and we contrasted parameter contributions during the transient and asymptotic phases. We found that the asymptotic invasion speed was 0.02–0.028 km/week, although the transient peak invasion speed (0.03– 0.045 km/week) was significantly greater. Both asymptotic and transient invasions speeds were most responsive to weevil dispersal distances. However, demographic parameters that had large effects on asymptotic speed (e.g., survival of early-instar larvae) had little effect on transient speed. Comparison of the global analysis with lower-level elasticities indicated that local perturbation analysis would have generated unreliable predictions for the responsiveness of invasion speed to underlying parameters. Observed range expansion in southern Florida (1992–2006) was significantly lower than the invasion speed predicted by the model. Possible causes of this mismatch include overestimation of dispersal distances, demographic rates, and spatiotemporal variation in parameter values. This study demonstrates that, when parameter uncertainty is large, as is often the case, global perturbation analyses are needed to identify which points in the life cycle should be targets of management. Our results also suggest that effective strategies for reducing spread during the asymptotic phase may have little effect during the transient phase. Includes Appendix.
Resumo:
Mycobacterium bovis infects the wildlife species badgers Meles meles who are linked with the spread of the associated disease tuberculosis (TB) in cattle. Control of livestock infections depends in part on the spatial and social structure of the wildlife host. Here we describe spatial association of M. bovis infection in a badger population using data from the first year of the Four Area Project in Ireland. Using second-order intensity functions, we show there is strong evidence of clustering of TB cases in each the four areas, i.e. a global tendency for infected cases to occur near other infected cases. Using estimated intensity functions, we identify locations where particular strains of TB cluster. Generalized linear geostatistical models are used to assess the practical range at which spatial correlation occurs and is found to exceed 6 in all areas. The study is of relevance concerning the scale of localized badger culling in the control of the disease in cattle.
Resumo:
The spread of wildlife diseases is a major threat to livestock, human health, resource-based recreation, and biodiversity conservation (Cleaveland, Laurenson, and Taylor). The development of economically sound wildlife disease-management strategies requires an understanding of the links between ecological functions (e.g., disease transmission and wildlife dispersal) and economic choices, and the associated tradeoffs. Spatial linkages are particularly relevant. Yet while ecologists have long-argued that space is important (Hudson et al.), prior economic work has largely ignored spatial issues. For instance, Horan and Wolf analyzed a case study of bovine tuberculosis (bTB) in Michigan deer, a problem where the disease appears to be confined to a single, spatially confined, wildlife population—an island. But wildlife disease matters generally are not spatially confined. Barlow, in analyzing bTB in possums in New Zealand, accounted for immigration of susceptible possums into a disease reservoir. However, he modeled immigration as fixed and unaffected by management. Bicknell, Wilen, and Howitt, also focusing on possums in New Zealand, developed a model that incorporates simple density-dependent net migration. This allowed the authors to account for endogenous immigration when deriving optimal culling strategies.
Resumo:
The spread of infectious disease among and between wild and domesticated animals has become a major problem worldwide. Upon analyzing the dynamics of wildlife growth and infection when the diseased animals cannot be identified separately from healthy wildlife prior to the kill, we find that harvest-based strategies alone have no impact on disease transmission. Other controls that directly influence disease transmission and/or mortality are required. Next, we analyze the socially optimal management of infectious wildlife. The model is applied to the problem of bovine tuberculosis among Michigan white-tailed deer, with non-selective harvests and supplemental feeding being the control variables. Using a two-state linear control model, we find a two-dimensional singular path is optimal (as opposed to a more conventional bang-bang solution) as part of a cycle that results in the disease remaining endemic in the wildlife. This result follows from non-selective harvesting and intermittent wildlife productivity gains from supplemental feeding.
Resumo:
Bovine tuberculosis (BTB) was introduced into Swedish farmed deer herds in 1987. Epidemiological investigations showed that 10 deer herds had become infected (July 1994) and a common source of infection, a consignment of 168 imported farmed fallow deer, was identified (I). As trace-back of all imported and in-contact deer was not possible, a control program, based on tuberculin testing, was implemented in July 1994. As Sweden has been free from BTB since 1958, few practicing veterinarians had experience in tuberculin testing. In this test, result relies on the skill, experience and conscientiousness of the testing veterinarian. Deficiencies in performing the test may adversely affect the test results and thereby compromise a control program. Quality indicators may identify possible deficiencies in testing procedures. For that purpose, reference values for measured skin fold thickness (prior to injection of the tuberculin) were established (II) suggested to be used mainly by less experienced veterinarians to identify unexpected measurements. Furthermore, the within-veterinarian variation of the measured skin fold thickness was estimated by fitting general linear models to data (skin fold measurements) (III). The mean square error was used as an estimator of the within-veterinarian variation. Using this method, four (6%) veterinarians were considered to have unexpectedly large variation in measurements. In certain large extensive deer farms, where mustering of all animals was difficult, meat inspection was suggested as an alternative to tuberculin testing. The efficiency of such a control was estimated in paper IV and V. A Reed Frost model was fitted to data from seven BTB-infected deer herds and the spread of infection was estimated (< 0.6 effective contacts per deer and year) (IV). These results were used to model the efficiency of meat inspection in an average extensive Swedish deer herd. Given a 20% annual slaughter and meat inspection, the model predicted that BTB would be either detected or eliminated in most herds (90%) 15 years after introduction of one infected deer. In 2003, an alternative control for BTB in extensive Swedish deer herds, based on the results of paper V, was implemented.
Resumo:
Scenario-based analyses were computed for benefits and costs linked with hypothetical oral rabies vaccination (ORV) campaigns to contain or eliminate skunk-variant rabies in skunks (Mephitis mephitis) in California, USA. Scenario 1 assumed baiting eight zones (43,388 km2 total) that comprised 73% of known skunk rabies locations in the state. Scenario 2 also assumed baiting these eight zones, but further assumed that added benefits would result from preventing the spread of skunk-variant rabies into Los Angeles County, USA. Scenarios assumed a fixed bait cost ($1.24 each) but varied campaigns (one, two and three annual ORV applications), densities of baits (37.5/km2, 75/km2 and 150/km2), levels of prevention (50%, 75%, and 100%), and contingency expenditures if rabies recurred (20%, 40%, and 60% of campaign costs). Prorating potential annual benefits during a 12-yr time horizon yielded benefit-cost ratios (BCRs) between 0.16 and 2.91 and between 0.34 and 6.35 for Scenarios 1 and 2, respectively. Economic issues relevant to potentially managing skunk-variant rabies with ORV are discussed.
Resumo:
Chronic wasting disease (CWD) has become a concern for wildlife managers and hunters across the United States. High prevalence of chronic wasting disease (CWD) in older male white-tailed deer (Odocoileus virginianus) suggests that sex-specific social behavior may contribute to the spread of the disease among males. Scraping is a marking behavior performed by male white-tailed deer during the rut in which a pawed depression and associated over-hanging branch are marked with saliva, glandular secretions, urine, and feces. We placed 71 and 35 motion-activated cameras on scrapes in DeSoto National Wildlife Refuge in western Nebraska and eastern Iowa from Oct. – Nov. 2005 and Sept. – Nov. 2006, respectively. We recorded 5009 encounters and 1830 direct interactions. We developed an ethogram of behaviors of interest at scrapes. We found that males interacted with scrapes more frequently than females (P < 0.001). Male interactions were more complex, with 69% consisting of ≥2 observed behaviors versus 25% and 13% for females and fawns. We identified individual male deer ≥2.5 years old and determined the minimum number of different scrapes individuals visited and the number of individuals that visit a single scrape. Individuals that appeared on camera ≥5 times visited a mean of 3.9 scrapes (range = 1-15) and traveled a mean minimum distance of 978 m between consecutive scrapes. A mean of 5.1 individuals visited a single scrape, and up to 43% of individuals returned to a scrape previously visited at least once. We modeled Risk Values based on frequency of occurrence, duration, and Threat Values of each behavior, for contacting and transmitting CWD prions at scrapes. Adult males had the highest total Risk Values for contacting CWD prions (114.1) and shedding prions (59.4). The “grasp-lick branch” behavior had the highest Risk Value for adult males for both contacting and transmitting prions. Our study reveals a sex specific social behavior in male white-tailed deer that has the potential to spread chronic wasting disease between adult males in the population.
Resumo:
On morphological and zoogeographical grounds, discussed in the present paper, it is concluded that the narrow-skulled vole in North America, previously designated Microtus (Stenocranius) miurus Osgood, is conspecific with the Eurasian M. (Stenocranius) gregalis Pallas. Fourteen subspecies in Eurasia and 5 in North America are now recognized, but it is probable that the number in Eurasia will be reduced through future investigation. The Eurasian subspecies of this vole comprise two major groups, of which one occupies the tundra zone and the other occurs across central Asia below latitude 60° N; their geographic ranges are largely separate but evidently become confluent in northeastern Siberia. The members of the northern group of Eurasian subspecies and the North American forms are closely related; the present distribution of the latter indicates post-glacial dispersal from the Amphiberingian Refugium. It is believed that the tundra-inhabiting voles in Eurasia likewise survived the Pleistocene glaciations in northern refugia, while the members of the southern group of subspecies probably represent populations that survived south of the limits of the continental glaciers. The ranges of the two Eurasian groups probably have become confluent during post-glacial time in northeastern Siberia as a result of the southward spread of the northern forms. At least, the subspecies having the intervening range closely resembles members of the northern group. Some of the ecological and ethological characteristics of these voles are briefly discussed. The chromosome number of one of the North American subspecies of narrow-skulled vole was determined to be 54; this is the first time that the chromosomes of a member of the subgenus Stenocranius have been investigated. A karyogram has been included. German abstract: Auf morphologischen und tiergeographischen Grundlagen, die in dieser Arbeit besprochen wurden, ist festgestellt worden, daß die schmalschädlige Wiihlmaus in Nordamerika, friiher Microtus (Stenocranius) miurus Osgood bezeichnet, mit der palaearktischen Art M. (Stenocranius) gregalis Pallas identisch ist. Zur Zeit gelten 14 Unterarten in Eurasien und 5 in Nordamerika als unterscheidbar; vermutlich aber wird die Zahl der palaearktischen Unterarten durch eingehendere Untersuchungen künftig vermindert werden. Auf Grund ihrer Verbreitung bilden die palaearktischen Unterarten zwei beinahe vollständig getrennte Gruppen. Die Wühlmäuse der nördlichen Gruppe bewohnen die Tundrazone, während die Vertreter der zweiten Gruppe über Mittelasien südlicher als 60° N.B. verbreitet sind. Die Verbreitungsgebiete der zwei Gruppen verbinden sich anscheinend. Die nordamerikanischen schmalschädligen Wühlmäuse sind mit den in der Tundrazone vorkommenden palaearktischen Formen nahe verwandt; sie haben sich wahrscheinlich während der Postglazialzeit aus dem Amphiberingschen Refugium verbreitet. Möglicherweise überlebten die tundrabewohnenden Wühlmäuse Eurasiens die Eiszeit ebenfalls in vereinzelten Refugien in Nordostsibirien, während die Formen der südlichen Gruppe sie jenseits der Grenzen des Festlandsgletschers überlebten. Wahrscheinlich wurden die zwei Verbreitungsgebiete dieser Art in Eurasien erst während der Postglazialzeit durch das Vordringen der nordischen Formen verbunden, da eine nähere Verwandtschaft zwischen den nördlichen und der dazwischenliegenden Unterart besteht. Einige ökologische und ethologische Eigentümlichkeiten dieser Wühlmäuse werden kurz besprochen. Es wurde festgestellt, daß eine der nordamerikanischen Unterarten der schmalschädligen Wühlmaus 54 Chromosomen hat; sie ist der einzige Vertreter der Untergattung Stenocranius, dessen Chromosomen untersucht worden sind.