3 resultados para sparse coding

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a resource-sharing scheme that supports three kinds of sharing scenarios in a WDM mesh network with path-based protection and sparse OEO regeneration. Several approaches are used to maximize the sharing of wavelength-links and OEO regenerators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sparse traffic grooming is a practical problem to be addressed in heterogeneous multi-vendor optical WDM networks where only some of the optical cross-connects (OXCs) have grooming capabilities. Such a network is called as a sparse grooming network. The sparse grooming problem under dynamic traffic in optical WDM mesh networks is a relatively unexplored problem. In this work, we propose the maximize-lightpath-sharing multi-hop (MLS-MH) grooming algorithm to support dynamic traffic grooming in sparse grooming networks. We also present an analytical model to evaluate the blocking performance of the MLS-MH algorithm. Simulation results show that MLSMH outperforms an existing grooming algorithm, the shortest path single-hop (SPSH) algorithm. The numerical results from analysis show that it matches closely with the simulation. The effect of the number of grooming nodes in the network on the blocking performance is also analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum-likelihood decoding is often the optimal decoding rule one can use, but it is very costly to implement in a general setting. Much effort has therefore been dedicated to find efficient decoding algorithms that either achieve or approximate the error-correcting performance of the maximum-likelihood decoder. This dissertation examines two approaches to this problem. In 2003 Feldman and his collaborators defined the linear programming decoder, which operates by solving a linear programming relaxation of the maximum-likelihood decoding problem. As with many modern decoding algorithms, is possible for the linear programming decoder to output vectors that do not correspond to codewords; such vectors are known as pseudocodewords. In this work, we completely classify the set of linear programming pseudocodewords for the family of cycle codes. For the case of the binary symmetric channel, another approximation of maximum-likelihood decoding was introduced by Omura in 1972. This decoder employs an iterative algorithm whose behavior closely mimics that of the simplex algorithm. We generalize Omura's decoder to operate on any binary-input memoryless channel, thus obtaining a soft-decision decoding algorithm. Further, we prove that the probability of the generalized algorithm returning the maximum-likelihood codeword approaches 1 as the number of iterations goes to infinity.