5 resultados para software testing methods
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Where the creation, understanding, and assessment of software testing and regression testing techniques are concerned, controlled experimentation is an indispensable research methodology. Obtaining the infrastructure necessary to support such experimentation, however, is difficult and expensive. As a result, progress in experimentation with testing techniques has been slow, and empirical data on the costs and effectiveness of techniques remains relatively scarce. To help address this problem, we have been designing and constructing infrastructure to support controlled experimentation with testing and regression testing techniques. This paper reports on the challenges faced by researchers experimenting with testing techniques, including those that inform the design of our infrastructure. The paper then describes the infrastructure that we are creating in response to these challenges, and that we are now making available to other researchers, and discusses the impact that this infrastructure has and can be expected to have.
Resumo:
Software product line (SPL) engineering offers several advantages in the development of families of software products such as reduced costs, high quality and a short time to market. A software product line is a set of software intensive systems, each of which shares a common core set of functionalities, but also differs from the other products through customization tailored to fit the needs of individual groups of customers. The differences between products within the family are well-understood and organized into a feature model that represents the variability of the SPL. Products can then be built by generating and composing features described in the feature model. Testing of software product lines has become a bottleneck in the SPL development lifecycle, since many of the techniques used in their testing have been borrowed from traditional software testing and do not directly take advantage of the similarities between products. This limits the overall gains that can be achieved in SPL engineering. Recent work proposed by both industry and the research community for improving SPL testing has begun to consider this problem, but there is still a need for better testing techniques that are tailored to SPL development. In this thesis, I make two primary contributions to software product line testing. First I propose a new definition for testability of SPLs that is based on the ability to re-use test cases between products without a loss of fault detection effectiveness. I build on this idea to identify elements of the feature model that contribute positively and/or negatively towards SPL testability. Second, I provide a graph based testing approach called the FIG Basis Path method that selects products and features for testing based on a feature dependency graph. This method should increase our ability to re-use results of test cases across successive products in the family and reduce testing effort. I report the results of a case study involving several non-trivial SPLs and show that for these objects, the FIG Basis Path method is as effective as testing all products, but requires us to test no more than 24% of the products in the SPL.
Resumo:
1. Distance sampling is a widely used technique for estimating the size or density of biological populations. Many distance sampling designs and most analyses use the software Distance. 2. We briefly review distance sampling and its assumptions, outline the history, structure and capabilities of Distance, and provide hints on its use. 3. Good survey design is a crucial prerequisite for obtaining reliable results. Distance has a survey design engine, with a built-in geographic information system, that allows properties of different proposed designs to be examined via simulation, and survey plans to be generated. 4. A first step in analysis of distance sampling data is modeling the probability of detection. Distance contains three increasingly sophisticated analysis engines for this: conventional distance sampling, which models detection probability as a function of distance from the transect and assumes all objects at zero distance are detected; multiple-covariate distance sampling, which allows covariates in addition to distance; and mark–recapture distance sampling, which relaxes the assumption of certain detection at zero distance. 5. All three engines allow estimation of density or abundance, stratified if required, with associated measures of precision calculated either analytically or via the bootstrap. 6. Advanced analysis topics covered include the use of multipliers to allow analysis of indirect surveys (such as dung or nest surveys), the density surface modeling analysis engine for spatial and habitat-modeling, and information about accessing the analysis engines directly from other software. 7. Synthesis and applications. Distance sampling is a key method for producing abundance and density estimates in challenging field conditions. The theory underlying the methods continues to expand to cope with realistic estimation situations. In step with theoretical developments, state-of- the-art software that implements these methods is described that makes the methods accessible to practicing ecologists.
Resumo:
Starting induction motors on isolated or weak systems is a highly dynamic process that can cause motor and load damage as well as electrical network fluctuations. Mechanical damage is associated with the high starting current drawn by a ramping induction motor. In order to compensate the load increase, the voltage of the electrical system decreases. Different starting methods can be applied to the electrical system to reduce these and other starting method issues. The purpose of this thesis is to build accurate and usable simulation models that can aid the designer in making the choice of an appropriate motor starting method. The specific case addressed is the situation where a diesel-generator set is used as the electrical supplied source to the induction motor. The most commonly used starting methods equivalent models are simulated and compared to each other. The main contributions of this thesis is that motor dynamic impedance is continuously calculated and fed back to the generator model to simulate the coupling of the electrical system. The comparative analysis given by the simulations has shown reasonably similar characteristics to other comparative studies. The diesel-generator and induction motor simulations have shown good results, and can adequately demonstrate the dynamics for testing and comparing the starting methods. Further work is suggested to refine the equivalent impedance presented in this thesis.
Resumo:
Nearly all biologic tissues exhibit viscoelastic behavior. This behavior is characterized by hysteresis in the response of the material to load or strain. This information can be utilized in extrapolation of life expectancy of vascular implant materials including native tissues and synthetic materials. This behavior is exhibited in many engineering materials as well such as the polymers PTFE, polyamide, polyethylene, etc. While procedures have been developed for evaluating the engineering polymers the techniques for biologic tissues are not as mature. There are multiple reasons for this. A major one is a cultural divide between the medical and engineering communities. Biomedical engineers are beginning to fill that void. A digitally controlled drivetrain designed to evaluate both elastic and viscoelastic characteristics of biologic tissues has been developed. The initial impetus for the development of this device was to evaluate the potential for human umbilical tissue to serve as a vascular graft material. The consequence is that the load frame is configured for membrane type specimens with rectangular dimensions of no more than 25mm per side. The designed load capacity of the drivetrain is to impose an axial load of 40N on the specimen. This drivetrain is capable of assessing the viscoelastic response of the specimens by four different test modes: stress relaxation, creep, harmonic induced oscillations, and controlled strain rate tests. The fluorocarbon PTFE has mechanical properties commensurate with vascular tissue. In fact, it has been used for vascular grafts in patients who have been victims of various traumas. Hardware and software validation of the device was accomplished by testing PTFE and comparing the results to properties that have been published by both researchers and manufacturers.