2 resultados para sodium citrate

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trauma deaths are a result of hemorrhage in 37% of civilians and 47% military personnel and are the primary cause of death for individuals under 44 years of age. Current techniques used to treat hemorrhage are inadequate for severe bleeding. Preliminary research indicates that fibrin sealants (FS) alone or in combination with a dressing may be more effective; however, it has not been economically feasible for widespread use because of prohibitive costs related to procuring the proteins. To meet future demands for hemostatic therapies, FS will likely include recombinant human fibrinogen (rFI) and recombinant human Factor XIII (rFXIII). The underlying hypothesis of the research presented in this dissertation is that a liquid fibrin sealant (LFS) composed of recombinant FI, FXIII and FIIa in optimized proportions can assist hemostasis in the presence and absence of a bioresorbable bandage while using considerably fewer biologics than commercial products currently available. This dissertation characterized rFI produced in the milk of transgenic cows, plasma-derived thrombin (pdFIIa) activated by sodium citrate and rFXIIIa expressed in genetically engineered Pichia pastoris with respect to their capacity to serve as components in a LFS. The ratios of these factors were optimized to yield a LFS with a rapid clot formation rate and high viscoelastic strength. This optimized LFS was preliminarily tested ex vivo and in vivo. The clotting kinetics and viscoelastic strength of our optimized LFS was equivalent to those of a commercially available LFS; however, it uses approximately 75% less fibrinogen and thrombin. Our optimal LFS successfully achieved hemostasis in a significant number of the wounds that included extensive tissue and vascular damage. LFS applied without the assistance of a dressing was able to stop bleeding of oozing wounds or those with small vessels; however, a scaffold was needed when wounds contained large vasculature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New and improved strategies are needed for managing overabundant blackbird (Icteridae spp.) populations in some areas of the United States. From 2004 to 2007, we evaluated sodium lauryl sulfate (SLS) as a wetting agent during controlled outdoor cage and flight pen tests in Colorado and small-scale field tests at urban blackbird roosts in Missouri. In the outdoor cage tests (ambient temperature -5 to 2° C), mortality of male red-winged blackbirds (Agelaius phoeniceus) sprayed with 1, 2, and 5 ml of SLS on the back feathers only, on the breast feathers only, or on both breast and back feathers ranged from 25% to 100%. A SLS spray on male red-winged blackbirds at 2° C ambient temperature with 1 ml of SLS sprayed on breast feathers and back feathers resulted in 90% mortality in less than 60 minutes. In a flight pen test (-12 to -5° C ambient temperature ), SLS sprayed at 20 l per 3,400 l of water with a single ground-based sprinkler-head system over 35 male red-winged blackbirds roosting in cedar trees (Juniperus virginiana) resulted in 53% mortality. There was no mortality in the control group exposed to the same treatment without the SLS. Small-scale field tests conducted in Missouri at 6 sites with a single ground-based sprinkler-head spray system and at 2 sites with 4 sprinkler-head spray systems resulted in mortality that ranged from 0 to 4,750 and 4,500 to 15,000 blackbirds and starlings, respectively. Spray operations lasted from 28 to 208 minutes. Each spray covered about 200 m2 . At all sites, mortality of blackbirds sprayed with the SLS occurred as soon as 30 minutes post-SLS application. Mortality at two sites where pump problems precluded completing the spray ranged from 0 to 800 birds. Air leaving the system as the system was activated caused birds to flush from the roost trees. Poor water quality and pump durability were problems at some sites.