1 resultado para small sample biases
em DigitalCommons@University of Nebraska - Lincoln
Filtro por publicador
- Academic Archive On-line (Mid Sweden University; Sweden) (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (34)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (157)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (4)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (50)
- Brock University, Canada (10)
- Brunel University (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CentAUR: Central Archive University of Reading - UK (40)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (6)
- Cochin University of Science & Technology (CUSAT), India (3)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (33)
- Dalarna University College Electronic Archive (6)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (13)
- DigitalCommons@The Texas Medical Center (42)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- Duke University (3)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Santarém (2)
- Instituto Politécnico de Viseu (3)
- Instituto Politécnico do Porto, Portugal (12)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (19)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (8)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (4)
- REPOSITÓRIO ABERTO do Instituto Superior Miguel Torga - Portugal (3)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (14)
- Repositório da Produção Científica e Intelectual da Unicamp (10)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório de Produção CIentífica da Escola Nacional de Saúde Pública Sergio Arouca (ENSP), FIOCRUZ (Fundação Oswaldo Cruz), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (39)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (2)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (30)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (2)
- South Carolina State Documents Depository (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (12)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade do Minho (2)
- Universidade dos Açores - Portugal (8)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (46)
- Université de Montréal (1)
- Université de Montréal, Canada (17)
- Université Laval Mémoires et thèses électroniques (1)
- University of Connecticut - USA (3)
- University of Michigan (3)
- University of Queensland eSpace - Australia (138)
- University of Washington (7)
- WestminsterResearch - UK (1)
Resumo:
The 3PL model is a flexible and widely used tool in assessment. However, it suffers from limitations due to its need for large sample sizes. This study introduces and evaluates the efficacy of a new sample size augmentation technique called Duplicate, Erase, and Replace (DupER) Augmentation through a simulation study. Data are augmented using several variations of DupER Augmentation (based on different imputation methodologies, deletion rates, and duplication rates), analyzed in BILOG-MG 3, and results are compared to those obtained from analyzing the raw data. Additional manipulated variables include test length and sample size. Estimates are compared using seven different evaluative criteria. Results are mixed and inconclusive. DupER augmented data tend to result in larger root mean squared errors (RMSEs) and lower correlations between estimates and parameters for both item and ability parameters. However, some DupER variations produce estimates that are much less biased than those obtained from the raw data alone. For one DupER variation, it was found that DupER produced better results for low-ability simulees and worse results for those with high abilities. Findings, limitations, and recommendations for future studies are discussed. Specific recommendations for future studies include the application of Duper Augmentation (1) to empirical data, (2) with additional IRT models, and (3) the analysis of the efficacy of the procedure for different item and ability parameter distributions.