6 resultados para shifted keystream
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
In the mid-1820s, Anglo-American fur trappers, known as "mountain men," entered Arizona and began trapping beaver (Castor canadensis). In Arizona there have been a number of famous mountain men such as Sylvester and James Pattie, Ewing Young, Jededia Smith, and Bill Williams who trapped along the waterways in northern and southern Arizona. Although the heyday of mountain men lasted only a few decades due to a population decline of beaver, management of these animals continues to this day. The purpose of managing beavers shifted from monetary gain to controlling wildlife damage. During the late 1900s, beaver were still widely distributed in limited numbers throughout much of the state. We provide a historical overview of beaver management in Arizona with emphasis on the mountain men, recreational trapping, wildlife damage management, and beaver research in Arizona.
Resumo:
BACKGROUND: Native to Africa, Gambian giant pouched rats (Gambian rats; Cricetomys gambianus Waterh.) are a threatening invasive species on a Florida island, Grassy Key. Gambian giant pouched rats shifted from a domestic pet to invading species after suspected release from a pet breeder. Because of the large size of Gambian rats (weighing up to 2.8 kg), they pose a serious threat to native species (particularly nesting species) and agricultural crops, especially if Gambian rats invade mainland Florida. Also, Gambian rats pose a threat from disease, as they were implicated in a monkeypox outbreak in the mid-western United States in 2003. The United States Department of Agriculture’s Wildlife Services has initiated eradication and detection efforts in the Florida Keys, but trapping the sparse population of Gambian rats has proven difficult. RESULTS: Fifteen attractants that could be used in traps for capturing or detecting single or paired Gambian rats were tested. It was found that conspecific scents (i.e. feces and urine) from other Gambian rats were the best treatment for attracting single and paired Gambian rats. Single Gambian rats explored more attractant types than paired Gambian rats. CONCLUSIONS: Effective attractants for use with Gambian rats have been identified, and multiple attractant types should be used to capture or detect the sparse population. It is recommended that mainly urine and feces from Gambian rats be used, but peanut butter, anise, ginger and fatty acid scent could also be useful for attracting the currently small population of Gambian rats on Grassy Key.
Resumo:
We conducted a comprehensive research project on elk in the Pine Ridge region of northwestern Nebraska from 1995 to 2002 to determine ecological factors that could be used to improve management and reduce damage. The population ranged from 120 to 150 animals, with an average calf:cow ratio of 0.5:1 and bull:cow ratio of 0.4:1. We located 21 radio-collared female elk 6,311 times during 1995 to 1997. Seasonal home ranges of 2 herds were 10 and 44 km2, while average annual home ranges of the herds were much larger (483 and 440 km2, respectively). All wintering areas (n = 21) and 80% of the calving areas (n = 22) were located on privately-owned land. Active timber harvest temporarily displaced elk, most notably during the calving season. Elk shifted home ranges in association with the seasonal availability of agricultural crops, in particular, alfalfa, oats, and winter wheat. Population models indicated that static levels of hunting mortality would lead to a stable population of about 130 elk over 10 years. Most landowners in the Pine Ridge (57%) favored free-ranging elk, but 26% were concerned about damage to agricultural crops and competition with livestock. Habitat suitability models and estimates of social carrying capacity indicate that up to 600 elk could be sustained in the Pine Ridge without significant impacts to landowners. We recommended an integrated management program used to enhance elk habitat on publicly-owned land and redistribute elk from privately-owned land.
Resumo:
Plant-sociological and climatic classification of the Australian Nothofagus cunninghamii rain forest provides the basis for a new, semiquantitative approach to interpretations of late-Quaternary paleoclimates from four pollen sequences in southwestern Tasmania. Varying proportions of rain-forest pollen types in the records were related to different modern rain-forest alliances and their specifc climatic regimes, such as Eastern Rain Forest, Leatherwood Rain Forest, and sclerophyllous, Subalpine Rain Forest. According to this interpretation, early Holocene climates were characterized by 1,600 mm annual precipitation and 10°C annual temperature, conditions substantially warmer and drier than previously thought. Maximum precipitation levels of 2,500 mm annually were not reached until 8,000 years B.P. A short-term cooling episode between 6,000 and 5,000 years B.P. led to the establishment of modern rain-forest distribution in western Tasmania, characterized either by a precipitation gradient steeper than before, or by greater climatic variability. To interpret paleoclimates from before 12,000 years B. P., when non-arboreal environments dominated in western Tasmanian bollen records, various modern treeless environments were studied in search for analogs. Contrary to earlier interpretations, late-glacial environments were not alpine tundra with a treeline at modern sea level, but steppe, with marshes or shallow lakes instead of the modern lakes. Climate was characterized by 50% less precipitation than today, resulting in substantial summer droughts. To explain such drastic precipitation decrease, the westerlies that dominate Tasmanian climate today must have been shifted polewards. This suggestion is supported by climate models that take Milankovitch-type insolation differences into account as well as sea-surface temperatures. Paleolimnological information based on diatom analyses support the general paleoclimatic reassessment.
Resumo:
Since 1950, the composition of the U.S. meat diet has shifted markedly from red meats to poultry. For example, from 1970 to 1984, on a percapita basis, beef consumption has declined by 6.4 percent, while chicken and turkey consumptions have increased by 37.9, and 42.5 percent respectively (U.S. Department of Agriculture, 1985). The numerous studies of this phenomenon from the demand side (Chavas, 1983; Braschler, 1983; Nyankori and Miller, 1982; Moschini and Meilke, 1984; Wohlgenant, 1985, Thurman, 1987; Chalfant and Alston, 1988) have failed to achieve a consensus as to whether a change in taste contributed to this shift. One reason for the lack of consensus is that the very large price and quantity changes make it difficult to establish whether consumers are on a new indifference map. But there have been no comparable studies of the nature and causes of the technological change that has made these large consumption and price changes possible. A decrease in the relative price of poultry with respect to red meat is in any case a major explanation of recent shifts in meat consumption patterns. The main reason for such a decrease appears to be a higher rate of technical progress in the poultry industry than in the red meat industry. Substantial productivity gains in both the production and marketing of poultry over the last two decades appears to have been translated into lower retail prices for poultry. Although some productivity gains have taken place in the red meat industry, they have not matched the cost reductions in the poultry industry (Chavas, 1987). Thus, a consumption shift from beef to poultry could possibly be interpreted as a response to changing relative prices, the structural change having occurred in the meat industry. This would imply that, if the beef industry desires to maintain or expand its market, it should seek a decrease in the production and marketing costs of beef.
Resumo:
The problem of rats in our Hawaiian sugar cane fields has been with us for a long time. Early records tell of heavy damage at various times on all the islands where sugar cane is grown. Many methods were tried to control these rats. Trapping was once used as a control measure, a bounty was used for a time, gangs of dogs were trained to catch the rats as the cane was harvested. Many kinds of baits and poisons were used. All of these methods were of some value as long as labor was cheap. Our present day problem started when the labor costs started up and the sugar industry shifted to long cropping. Until World War II cane was an annual crop. After the war it was shifted to a two year crop, three years in some places. Depending on variety, location, and soil we raise 90 to 130 tons of sugar cane per acre, which produces 7 to 15 tons of sugar per acre for a two year crop. This sugar brings about $135 dollars per ton. This tonnage of cane is a thick tangle of vegetation. The cane grows erect for almost a year, as it continues to grow it bends over at the base. This allows the stalk to rest on the ground or on other stalks of cane as it continues to grow. These stalks form a tangled mat of stalks and dead leaves that may be two feet thick at the time of harvest. At the same time the leafy growing portion of the stalk will be sticking up out of the mat of cane ten feet in the air. Some of these individual stalks may be 30 feet long and still growing at the time of harvest. All this makes it very hard to get through a cane field as it is one long, prolonged stumble over and through the cane. It is in this mat of cane that our three species of rats live. Two species are familiar to most people in the pest control field. Rattus norvegicus and Rattus rattus. In the latter species we include both the black rat and the alexandrine rats, their habits seem to be the same in Hawaii. Our third rat is the Polynesian rat, Rattus exlans, locally called the Hawaiian rat. This is a small rat, the average length head to tip of tail is nine inches and the average body weight is 65 grams. It has dark brownish fur like the alexandrine rats, and a grey belly. It is found in Indonesia, on most of the islands of Oceania and in New Zealand. All three rats live in our cane fields and the brushy and forested portions of our islands. The norway and alexandrine rats are found in and around the villages and farms, the Polynesian rat is only found in the fields and waste areas. The actual amount of damage done by rats is small, but destruction they cause is large. The rats gnaw through the rind of the cane stalk and eat the soft juicy and sweet tissues inside. They will hollow out one to several nodes per stalk attacked. The effect to the cane stalk is like ringing a tree. After this attack the stalk above the chewed portion usually dies, and sometimes the lower portion too. If the rat does not eat through the stalk the cane stalk could go on living and producing sugar at a reduced rate. Generally an injured stalk does not last long. Disease and souring organisms get in the injury and kill the stalk. And if this isn't enough, some insects are attracted to the injured stalk and will sometimes bore in and kill it. An injured stalk of cane doesn't have much of a chance. A rat may only gnaw out six inches of a 30 foot stalk and the whole stalk will die. If the rat only destroyed what he ate we could ignore them but they cause the death of too much cane. This dead, dying, and souring cane cause several direct and indirect tosses. First we lose the sugar that the cane would have produced. We harvest all of our cane mechanically so we haul the dead and souring cane to the mill where we have to grind it with our good cane and the bad cane reduces the purity of the sugar juices we squeeze from the cane. Rats reduce our income and run up our overhead.