3 resultados para sequential exploitation

em DigitalCommons@University of Nebraska - Lincoln


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gray whales (Eschrichtius robustus) occur along the eastern and western coastlines of the North Pacific as two geographically isolated populations and have traditionally been divided into the eastern (California-Chukchi) and western (Korean-Okhotsk) populations. Recent molecular comparisons confirm, based on differences in haplotypic frequencies, that these populations are genetically separated at the population-level. Both populations were commercially hunted, but only the eastern gray whale has returned to near pre-exploitation numbers. In contrast, the western population remains highly depleted, shows no apparent signs of recovery and its future survival remains uncertain. Research off Sakhalin Island, Russia between 1995 and 1999 has produced important new information on the present day conservation status of western gray whales and provided the basis for the World Conservation Union (IUCN) to list the population as 'Critically Endangered in 2000. The information presented here, in combination with potential impacts from anthropogenic threats throughout the range of this population, raises strong concerns about the recovery and continued survival of the western gray whale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Springer et al. (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling’s removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al., and much of the reduction occurred 50–100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al. suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al.) were likely abundant throughout the period. Overall, we suggest that the Springer et al. hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active machine learning algorithms are used when large numbers of unlabeled examples are available and getting labels for them is costly (e.g. requiring consulting a human expert). Many conventional active learning algorithms focus on refining the decision boundary, at the expense of exploring new regions that the current hypothesis misclassifies. We propose a new active learning algorithm that balances such exploration with refining of the decision boundary by dynamically adjusting the probability to explore at each step. Our experimental results demonstrate improved performance on data sets that require extensive exploration while remaining competitive on data sets that do not. Our algorithm also shows significant tolerance of noise.