3 resultados para return to work
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
Central-place foragers that must return to a breeding site to deliver food to offspring are faced with trade-offs between prey patch quality and distance from the colony. Among colonial animals, pinnipeds and seabirds may have different provisioning strategies, due to differences in their ability to travel and store energy. We compared the foraging areas of lactating Antarctic fur seals and chinstrap penguins breeding at Seal Island, Antarctica, to investigate whether they responded differently to the distribution of their prey (Antarctic krill and myctophid fish) and spatial heterogeneity in their habitat. Dense krill concentrations occurred in the shelf region near the colony. However, only brooding penguins, which are expected to be time-minimizers because they must return frequently with whole food for their chicks, foraged mainly in this proximal shelf region. Lactating fur seals and incubating penguins, which can make longer trips to increase energy gain per trip, and so are expected to be energy-maximizers, foraged in the more distant (>20 km from the island) slope and oceanic regions. The shelf region was characterized by more abundant, but lower-energy-content immature krill, whereas the slope and oceanic regions had less abundant but higher-energy-content gravid krill, as well as high-energy-content myctophids. Furthermore, krill in the shelf region undertook diurnal vertical migration, whereas those in the slope and oceanic regions stayed near the surface throughout the day, which may enhance the capture rate for visual predators. Therefore, we sug- gest that the energy-maximizers foraged in distant, but potentially more profitable feeding regions, while the time-minimizers foraged in closer, but potentially less profitable regions. Thus, time and energy constraints derived from different provisioning strategies may result in sympatric colonial predator species using different foraging areas, and as a result, some central-place foragers use sub- optimal foraging habitats, in terms of the quality or quantity of available prey.
Resumo:
Stress hormones in Rocky Mountain bighorn sheep (Ovis canadensis canadensis), produced in response to environmental changes, road development, or high population density, may impact their immune systems to a threshold level that predisposes them to periodic, large-scale mortality. We compared the stress response to a novel environmental situation and repeated handling between bighorn sheep born and raised in captivity (CR) and bighorn sheep born in the wild (WC) and brought into captivity. We measured plasma epinephrine, norepinephrine, cortisol, and fecal glucocorticoid metabolites (FGM). Three weeks after each group’s arrival we used a one-time drop-net event to elicit an acute stress response, and we collected blood samples from each sheep over 35 minutes, as well as one fecal sample. We collected blood and fecal samples from both groups on 7 other occasions over the subsequent 6 months. We also collected fecal samples from the pen at approximately 24-hour intervals for 3 days following every handling event to monitor the stress response to handling. We found that CR sheep had a stronger autonomic nervous system response than WC sheep, as measured by epinephrine and norepinephrine levels, but we found a very similar hypothalamic–pituitary–adrenal axis (HPA) response, measured by cortisol levels, to the acute stress event of a drop-net restraint. We also found that once the WC sheep had acclimated, as indicated by the return to the initial baseline FGM levels within 12 weeks, the CR and WC groups’ HPA responses to sampling events were not significantly different from one another. Fecal samples can provide a noninvasive mechanism for managers to monitor baseline FGM for a given herd. Using long-term monitoring of FGM rather than values from a single point in time may allow managers to correlate these levels to outside influences on the herd and better understand the impacts of management changes, population density, or increased human developments on the health of the sheep population.
Resumo:
Every fall millions of blackbirds come down the Mississippi Flyway to return to their winter roosts in Arkansas, Louisiana, and East Texas. When these roosts are located in urban areas, public pressure makes the more common chemical means of control impractical. A less destructive and more permanent method of control was sought. At Rice University, in Houston, Texas, there has been a blackbird roost of various sizes and durations since 1956. For the past two years we have had the opportunity both to study roosting blackbird biology and experiment with habitat alteration as a control method. This particular report concentrates on the results and interpretation of the tree- trimming program initiated in August 1974. The birds involved are primarily Brown-headed Cowbirds (Molothrus ater), along with Starlings (sturnus vulgaris), Common and Great-tailed Grackles (Quiscalus quiscula and Cassidix mexicanus), Red-winged Blackbirds (Agelaius phoenicus) and Robins (Turdus migratorius). The campus comprises 121 ha and was planted with live oaks (Quercus virginiana) in 1912. These trees retain their foliage throughout the winter and now form a closed canopy over some 5-6 ha. In the 60s and early 70s most of the birds that came to Houston for the winter roosted in a 64-ha woodlot 10 km north of campus. In January 1970, the U.S. Fish and Wildlife Roosting Survey reported one million birds at this site we call the North Loop. Fifteen- thousand birds were estimated at Rice.