2 resultados para rare minnow
em DigitalCommons@University of Nebraska - Lincoln
Resumo:
The gill monogene communities of Pimephales promelas (fathead minnow) in three distinct sites on converging streams were investigated from 2004 to 2006 in three different seasons. Thirty collections of P. promelas were made in southeastern Nebraska along three converging tributaries: Elk Creek (40.88534°N, 96.83366°W), West Oak Creek (40.9082°N, 96.81432°W), and Oak Creek (40.91402°N, 96.770583°W), Lancaster County, Nebraska. In all, 103 P. promelas were collected from Elk Creek, 115 from West Oak Creek, and 78 from Oak Creek and examined for gill monogenes. Among the P. promelas collected, 93.5% were infected with up to three species of Dactylogyrus, including Dactylogyrus simplex Mizelle, 1937, Dactylogyrus bychowskyi Mizelle, 1937, and Dactylogyrus pectenatus Mayes, 1977. Mean intensities at Elk Creek, West Oak Creek, and Oak Creek were 17.6, 22.8, and 25.1, and prevalences 88, 95, and 97%, respectively. At these three sites: (1) P. promelas does not share Dactylogyrus species with Semotilus atromaculatus (creek chub) or Notropis stramineus (sand shiner); (2) fish size and sex are not predictive of Dactylogyrus infection; (3) Dactylogyrus spp. vary (not always predictably) in their seasonal occurrence; (4) populations of Dactylogyrus spp. respond to environmental differences among sites; and (5) the community structure of Dactylogyrus spp. (order of abundance) is independent of environment.
Resumo:
As the area of nanotechnology continues to grow, the development of new nanomaterials with interesting physical and electronic properties and improved characterization techniques are several areas of research that will be remain vital for continued improvement of devices and the understanding in nanoscale phenomenon. In this dissertation, the chemical vapor deposition synthesis of rare earth (RE) compounds is described in detail. In general, the procedure involves the vaporization of a REClx (RE = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho) in the presence of hydride phase precursors such as decaborane and ammonia at high temperatures and low pressures. The vapor-liquid-solid mechanism was used in combination with the chemical vapor deposition process to synthesize single crystalline rare earth hexaboride nanostructures. The crystallographic orientation of as-synthesized rare earth hexaboride nanostructures and gadolinium nitride thin films was controlled by judicious choice of specific growth substrates and modeled by analyzing x-ray diffraction powder patterns and crystallographic models. The rare earth hexaboride nanostructures were then implemented into two existing technologies to enhance their characterization capabilities. First, the rare earth hexaboride nanowires were used as a test material for the development of a TEM based local electrode atom probe tomography (LEAP) technique. This technique provided some of the first quantitative compositional information of the rare earth hexaboride systems. Second, due to the rigidity and excellent conductivity of the rare earth hexaborides, nanostructures were grown onto tungsten wires for the development of robust, oxidation resistant nanomanipulator electronic probes for semiconductor device failure analysis.